login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014068
a(n) = binomial(n*(n+1)/2, n).
38
1, 1, 3, 20, 210, 3003, 54264, 1184040, 30260340, 886163135, 29248649430, 1074082795968, 43430966148115, 1917283000904460, 91748617512913200, 4730523156632595024, 261429178502421685800, 15415916972482007401455, 966121413245991846673830, 64123483527473864490450300
OFFSET
0,3
COMMENTS
Product of next n numbers divided by product of first n numbers. E.g., a(4) = (7*8*9*10)/(1*2*3*4)= 210. - Amarnath Murthy, Mar 22 2004
Also the number of labeled loop-graphs with n vertices and n edges. The covering case is A368597. - Gus Wiseman, Jan 25 2024
LINKS
Eric Weisstein's World of Mathematics, Graph Loop.
FORMULA
For n >= 1, Product_{k=1..n} a(k) = A022915(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
For n > 0, a(n) = A022915(n)/A022915(n-1). - Gerald McGarvey, Jul 26 2004
a(n) = binomial(T(n+1), T(n)) where T(n) = the n-th triangular number. - Amarnath Murthy, Jul 14 2005
a(n) = binomial(binomial(n+2, n), n+1) for n >= -1. - Zerinvary Lajos, Nov 30 2009
From Peter Bala, Feb 27 2020: (Start)
a(p) == (p + 1)/2 ( mod p^3 ) for prime p >= 5 (apply Mestrovic, equation 37).
Conjectural: a(2*p) == p*(2*p + 1) ( mod p^4 ) for prime p >= 5. (End)
a(n) = A084546(n,n). - Gus Wiseman, Jan 25 2024
EXAMPLE
From Gus Wiseman, Jan 25 2024: (Start)
The a(0) = 1 through a(3) = 20 loop-graph edge-sets (loops shown as singletons):
{} {{1}} {{1},{2}} {{1},{2},{3}}
{{1},{1,2}} {{1},{2},{1,2}}
{{2},{1,2}} {{1},{2},{1,3}}
{{1},{2},{2,3}}
{{1},{3},{1,2}}
{{1},{3},{1,3}}
{{1},{3},{2,3}}
{{2},{3},{1,2}}
{{2},{3},{1,3}}
{{2},{3},{2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,3},{2,3}}
{{2},{1,2},{1,3}}
{{2},{1,2},{2,3}}
{{2},{1,3},{2,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
(End)
MATHEMATICA
Binomial[First[#], Last[#]]&/@With[{nn=20}, Thread[{Accumulate[ Range[ 0, nn]], Range[ 0, nn]}]] (* Harvey P. Dale, May 27 2014 *)
PROG
(Sage) [(binomial(binomial(n+1, n-1), n)) for n in range(20)] # Zerinvary Lajos, Nov 30 2009
(Magma) [Binomial(Binomial(n+1, 2), n): n in [0..40]]; // G. C. Greubel, Feb 19 2022
(Python)
from math import comb
def A014068(n): return comb(comb(n+1, 2), n) # Chai Wah Wu, Jul 14 2024
CROSSREFS
Diagonal of A084546.
Without loops we have A116508, covering A367863, unlabeled A006649.
Allowing edges of any positive size gives A136556, covering A054780.
The covering case is A368597.
The unlabeled version is A368598, covering A368599.
The connected case is A368951.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 (shifted left) counts loop-graphs, covering A322661.
A006129 counts covering simple graphs, connected A001187.
A058891 counts set-systems, unlabeled A000612.
Sequence in context: A257476 A218673 A230478 * A006963 A243426 A365438
KEYWORD
nonn
STATUS
approved