login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000612
Number of P-equivalence classes of switching functions of n or fewer variables, divided by 2.
(Formerly M1712 N0677)
131
1, 2, 6, 40, 1992, 18666624, 12813206169137152, 33758171486592987164087845043830784, 1435913805026242504952006868879460423834904914948818373264705576411070464
OFFSET
0,2
COMMENTS
Also number of nonisomorphic sets of nonempty subsets of an n-set.
Equivalently, number of nonisomorphic fillings of a Venn diagram of n sets. - Joerg Arndt, Mar 24 2020
Number of hypergraphs on n unlabeled nodes. - Charles R Greathouse IV, Apr 06 2021
REFERENCES
M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 153.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 Table 2.3.2. - Row 5.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561.
M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561. [Annotated scanned copy]
Geon Lee, Seokbum Yoon, Jihoon Ko, Hyunju Kim, and Kijung Shin, Hypergraph Motifs and Their Extensions Beyond Binary, arXiv:2310.15668 [cs.SI], 2023.
Peter H. van der Kamp, Hypergraphs and homogeneous Lotka-Volterra systems with linear Darboux polynomials, arXiv:2411.18264 [nlin.SI], 2024. See p. 4.
Wikipedia, Venn diagram
FORMULA
a(n) = A003180(n)/2.
EXAMPLE
Non-isomorphic representatives of the a(2) = 6 set-systems are 0, {1}, {12}, {1}{2}, {1}{12}, {1}{2}{12}. - Gus Wiseman, Aug 07 2018
MAPLE
a:= n-> add(1/(p-> mul((c-> j^c*c!)(coeff(p, x, j)), j=1..degree(p)))(
add(x^i, i=l))*2^((w-> add(mul(2^igcd(t, l[i]), i=1..nops(l)),
t=1..w)/w)(ilcm(l[]))), l=combinat[partition](n))/2:
seq(a(n), n=0..9); # Alois P. Heinz, Aug 12 2019
MATHEMATICA
sysnorm[{}] := {}; sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]], sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[sysnorm[m, 1]]]]; sysnorm[m_, aft_]:=If[Length[Union@@m]<=aft, {m}, With[{mx=Table[Count[m, i, {2}], {i, Select[Union@@m, #>=aft&]}]}, Union@@(sysnorm[#, aft+1]&/@Union[Table[Map[Sort, m/.{par+aft-1->aft, aft->par+aft-1}, {0, 1}], {par, First/@Position[mx, Max[mx]]}]])]];
Table[Length[Union[sysnorm/@Subsets[Rest[Subsets[Range[n]]]]]], {n, 4}] (* Gus Wiseman, Aug 07 2018 *)
a[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l=={}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}]/2;
a /@ Range[0, 9] (* Jean-François Alcover, Feb 04 2020, after Alois P. Heinz *)
PROG
(Python)
def partition(n, I=1):
yield () if n==0 else (n, )
for i in range(I, n//2 + 1):
for p in partition(n-i, i):
yield (i, ) + p
def a(n):
import math, operator, functools
fracs = [(1<<(sum(functools.reduce(operator.mul, (1<<math.gcd(t, li) for li in l), 1) for t in range(1, w+1))//w), functools.reduce(operator.mul, (j**c*math.factorial(c) for j in range(1, max(l, default=0)+1) for c in (sum(li==j for li in l), )), 1)) for l in partition(n) for w in (math.lcm(*l), )]
return next(iter(sum(x*(m//y) for x, y in fracs)//m//2 for m in (math.lcm(*(z for _, z in fracs)), )))
[a(n) for n in range(13)] # Gregory Morse, Dec 23 2024
CROSSREFS
KEYWORD
nonn,easy,nice,core
EXTENSIONS
More terms from Vladeta Jovovic, Feb 23 2000
STATUS
approved