login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058891 a(n) = 2^(2^(n-1) - 1). 67
1, 2, 8, 128, 32768, 2147483648, 9223372036854775808, 170141183460469231731687303715884105728, 57896044618658097711785492504343953926634992332820282019728792003956564819968 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n > 1, a(n) is the least solution > 1 to rad(x)^(n-1) = tau(x) where rad(x) = A007947(x) is the squarefree kernel of x and tau(x) = A000005(x) the number of divisors of x. - Benoit Cloitre, Apr 18 2002 [Corrected by Michel Marcus, Oct 15 2018]

For n > 1, a(n) is also the total number of possible outcomes of a knockout tournament starting with 2^(n-1) players, taking account of all matches in the tournament. - Martin Griffiths, Mar 26 2009

REFERENCES

F. Harary, Graph Theory, Page 209, Problem 16.11.

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..12

FORMULA

a(n) = A053287(A000079(n-1)).

a(1) = 1, a(n+1) = 2*a(n)^2.

a(1) = 1, a(n+1) = 2^n*a(1)*a(2)*...*a(n). - Benoit Cloitre, Sep 13 2003

a(n) = (-1/2)*((1 + sqrt(-3))^(2^n) + (1 - sqrt(-3))^(2^n)). - Artur Jasinski, Oct 11 2008

a(n) = 2*a(n-1)^2 is an example with a(1) = 1 and k = 2 of a(n) = k*a(n-1)^2; general explicit formula: a(n) = ((a(1)*k)^(2^(n-1)))/k. - Andreas Pfaffel (andreas.pfaffel(AT)gmx.at), Apr 27 2010

a(n) = A077585(n-1) + 1. - Maurizio De Leo, Feb 25 2015

MAPLE

a[1]:=1: for n from 2 to 20 do a[n]:=2*a[n-1]^2 od: seq(a[n], n=1..9); # Zerinvary Lajos, Apr 16 2009

MATHEMATICA

a = 1; b = -3; Table[Expand[(-1/2) ((a + Sqrt[b])^(2^n) + (a - Sqrt[b])^(2^n))], {n, 1, 10}] (* Artur Jasinski, Oct 11 2008 *)

PROG

(PARI) { t=1; for (n = 1, 12, write("b058891.txt", n, " ", 2^(t-1)); t*=2; ) } \\ Harry J. Smith, Jun 23 2009

CROSSREFS

Cf. A077585.

Sequence in context: A307124 A111179 A178173 * A274171 A184945 A058343

Adjacent sequences:  A058888 A058889 A058890 * A058892 A058893 A058894

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jan 08 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 00:32 EST 2019. Contains 329383 sequences. (Running on oeis4.)