|
|
A058891
|
|
a(n) = 2^(2^(n-1) - 1).
|
|
93
|
|
|
1, 2, 8, 128, 32768, 2147483648, 9223372036854775808, 170141183460469231731687303715884105728, 57896044618658097711785492504343953926634992332820282019728792003956564819968
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For n > 1, a(n) is the least solution > 1 to rad(x)^(n-1) = tau(x) where rad(x) = A007947(x) is the squarefree kernel of x and tau(x) = A000005(x) the number of divisors of x. - Benoit Cloitre, Apr 18 2002 [Corrected by Michel Marcus, Oct 15 2018]
For n > 1, a(n) is also the total number of possible outcomes of a knockout tournament starting with 2^(n-1) players, taking account of all matches in the tournament. - Martin Griffiths, Mar 26 2009
Also, a(n+1) = 2^(2^n-1) for n >= 1 are solutions x = y of the Diophantine equation x^y * y^x = (x+y)^z in positive integers; corresponding solutions z are in A348332 (see this last sequence for more informations and links). - Bernard Schott, Oct 13 2021
|
|
REFERENCES
|
F. Harary, Graph Theory, Page 209, Problem 16.11.
|
|
LINKS
|
|
|
FORMULA
|
a(1) = 1, a(n+1) = 2*a(n)^2.
a(1) = 1, a(n+1) = 2^n*a(1)*a(2)*...*a(n). - Benoit Cloitre, Sep 13 2003
a(n) = (-1/2)*((1 + sqrt(-3))^(2^n) + (1 - sqrt(-3))^(2^n)). - Artur Jasinski, Oct 11 2008
a(n) = 2*a(n-1)^2 is an example with a(1) = 1 and k = 2 of a(n) = k*a(n-1)^2; general explicit formula: a(n) = ((a(1)*k)^(2^(n-1)))/k. - Andreas Pfaffel (andreas.pfaffel(AT)gmx.at), Apr 27 2010
|
|
EXAMPLE
|
The 8 possible hyperedge sets for the vertex set {1, 2} are {}, {{1}}, {{2}}, {{1, 2}}, {{1}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}} and {{1}, {2}, {1, 2}}. - Lorenzo Sauras Altuzarra, Apr 01 2023
|
|
MAPLE
|
a[1]:=1: for n from 2 to 20 do a[n]:=2*a[n-1]^2 od: seq(a[n], n=1..9); # Zerinvary Lajos, Apr 16 2009
|
|
MATHEMATICA
|
a = 1; b = -3; Table[Expand[(-1/2) ((a + Sqrt[b])^(2^n) + (a - Sqrt[b])^(2^n))], {n, 1, 10}] (* Artur Jasinski, Oct 11 2008 *)
|
|
PROG
|
(PARI) { t=1; for (n = 1, 12, write("b058891.txt", n, " ", 2^(t-1)); t*=2; ) } \\ Harry J. Smith, Jun 23 2009
(Python)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|