login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306005 Number of non-isomorphic set-systems of weight n with no singletons. 27
1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

A set-system is a finite set of finite nonempty sets (edges). The weight is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..50

FORMULA

a(n) = A283877(n) - A330053(n). - Gus Wiseman, Dec 09 2019

EXAMPLE

Non-isomorphic representatives of the a(6) = 12 set-systems:

  {{1,2,3,4,5,6}}

  {{1,2},{3,4,5,6}}

  {{1,5},{2,3,4,5}}

  {{3,4},{1,2,3,4}}

  {{1,2,3},{4,5,6}}

  {{1,2,5},{3,4,5}}

  {{1,3,4},{2,3,4}}

  {{1,2},{1,3},{2,3}}

  {{1,2},{3,4},{5,6}}

  {{1,2},{3,5},{4,5}}

  {{1,3},{2,4},{3,4}}

  {{1,4},{2,4},{3,4}}

PROG

(PARI) \\ See A283877 for permcount, WeighT, SetTypes.

a(n) = {if(n==0, 1, my(s=0); forpart(p=n, s+=permcount(p)*WeighT(SetTypes(p, q->q-x*polcoef(q, 1)))[n]); s/n!)} \\ Andrew Howroyd, Sep 01 2019

CROSSREFS

The complement is counted by A330053.

Cf. A007716, A034691, A048143, A049311, A054921, A116540, A283877, A293606, A293607, A304867, A305999, A305854-A305857, A306005-A306008.

Sequence in context: A347257 A123765 A124817 * A124818 A321412 A124638

Adjacent sequences:  A306002 A306003 A306004 * A306006 A306007 A306008

KEYWORD

nonn

AUTHOR

Gus Wiseman, Jun 16 2018

EXTENSIONS

Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 22:05 EDT 2021. Contains 348095 sequences. (Running on oeis4.)