login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322661
Number of graphs with loops spanning n labeled vertices.
68
1, 1, 5, 45, 809, 28217, 1914733, 254409765, 66628946641, 34575388318705, 35680013894626133, 73392583417010454429, 301348381381966079690489, 2471956814761996896091805993, 40530184362443281653842556898237, 1328619783326799871943604598592805525
OFFSET
0,3
COMMENTS
The span of a graph is the union of its edges.
LINKS
FORMULA
Exponential transform of A062740, if we assume A062740(1) = 1.
Inverse binomial transform of A006125(n+1) = 2^binomial(n+1,2).
EXAMPLE
The a(2) = 5 edge-sets:
{{1,2}}
{{1,1},{1,2}}
{{1,1},{2,2}}
{{1,2},{2,2}}
{{1,1},{1,2},{2,2}}
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[n, k]*2^Binomial[k+1, 2], {k, 0, n}], {n, 10}]
(* second program *)
Table[Select[Expand[Product[1+x[i]*x[j], {j, n}, {i, j}]], And@@Table[!FreeQ[#, x[i]], {i, n}]&]/.x[_]->1, {n, 7}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k+1, 2)) \\ Andrew Howroyd, Jan 06 2024
CROSSREFS
Cf. A000666, A006125, A006129 (loops not allowed), A054921, A062740, A116539, A320461, A322635, A048291 (for directed edgs).
Sequence in context: A243951 A290941 A211051 * A191962 A326650 A323572
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 22 2018
STATUS
approved