login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323572
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^n + i)^n / (A(x) + 1 + i*(1+x)^n)^(n+1), where i^2 = -1.
0
1, 5, 45, 1142, 47253, 2664573, 187170069, 15598588065, 1497110942013, 162226788530207, 19566798092698042, 2598785222401424468, 376850999493886187699, 59248452153964672923677, 10039900576546291696149404, 1824412367286993070795917580, 353943959915575446954764374094, 73024199735586268826145811783169, 15966496692824534985042866376857576, 3688160965656359052252569464435170928, 897528733209823570848685886402050648933
OFFSET
0,2
COMMENTS
It is remarkable that the generating function results in a power series in x with only real coefficients.
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^n + i)^n / (A(x) + 1 + i*(1+x)^n)^(n+1).
(2) 1 = Sum_{n>=0} ((1+x)^n - i)^n / (A(x) + 1 - i*(1+x)^n)^(n+1).
(3) 1 = Sum_{n>=0} ((1+x)^n + i)^n * (A(x) + 1 - i*(1+x)^n)^(n+1) / ((A(x) + 1)^2 + (1+x)^(2*n))^(n+1).
(4) 1 = Sum_{n>=0} ((1+x)^n - i)^n * (A(x) + 1 + i*(1+x)^n)^(n+1) / ((A(x) + 1)^2 + (1+x)^(2*n))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 5*x + 45*x^2 + 1142*x^3 + 47253*x^4 + 2664573*x^5 + 187170069*x^6 + 15598588065*x^7 + 1497110942013*x^8 + 162226788530207*x^9 + ...
such that
1 = 1/(A(x) + 1+i) + ((1+x) + i)/(A(x) + 1 + i*(1+x))^2 + ((1+x)^2 + i)^2/(A(x) + 1 + i*(1+x)^2)^3 + ((1+x)^3 + i)^3/(A(x) + 1 + i*(1+x)^3)^4 + ((1+x)^4 + i)^4/(A(x) + 1 + i*(1+x)^4)^5 + ((1+x)^5 + i)^5/(A(x) + 1 + i*(1+x)^5)^6 + ...
also,
1 = 1/(A(x) + 1-i) + ((1+x) - i)/(A(x) + 1 - i*(1+x))^2 + ((1+x)^2 - i)^2/(A(x) + 1 - i*(1+x)^2)^3 + ((1+x)^3 - i)^3/(A(x) + 1 - i*(1+x)^3)^4 + ((1+x)^4 - i)^4/(A(x) + 1 - i*(1+x)^4)^5 + ((1+x)^5 - i)^5/(A(x) + 1 - i*(1+x)^5)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = round( Vec( sum(m=0, #A*20+300, ((1+x+x*O(x^n))^m + I)^m / (Ser(A) + 1 + I*(1+x+x*O(x^n))^m)^(m+1)*1. ) )[#A]) ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = round( Vec( sum(m=0, #A*20+300, ((1+x+x*O(x^n))^m - I)^m / (Ser(A) + 1 - I*(1+x+x*O(x^n))^m)^(m+1)*1. ) )[#A]) ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A323313.
Sequence in context: A322661 A191962 A326650 * A368491 A318092 A050641
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2019
STATUS
approved