login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323574
G.f. A(x) satisfies: 1 = Sum_{n>=0} 2^n * ((1+x)^n - 1)^n / (A(x) + 2 - 2*(1+x)^n)^(n+1).
1
1, 2, 20, 320, 7996, 269272, 11293792, 563253696, 32433009160, 2113347523336, 153579286783456, 12309659862402976, 1078628781953636960, 102578628758305245024, 10523148808846566898816, 1158407291029244188955264, 136214299772837816557703120, 17040721610970237566148646464, 2260018461602151565512432884608, 316748455363386162460484685488512
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} 2^n * ((1+x)^n - 1)^n/(A(x) + 2 - 2*(1+x)^n)^(n+1).
(2) 1 = Sum_{n>=0} 2^n * ((1+x)^n + 1)^n/(A(x) + 2 + 2*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 20*x^2 + 320*x^3 + 7996*x^4 + 269272*x^5 + 11293792*x^6 + 563253696*x^7 + 32433009160*x^8 + 2113347523336*x^9 + 153579286783456*x^10 + ...
such that
1 = 1/A(x) + 2*((1+x) - 1)/(A(x) + 2 - 2*(1+x))^2 + 2^2*((1+x)^2 - 1)^2/(A(x) + 2 - 2*(1+x)^2)^3 + 2^3*((1+x)^3 - 1)^3/(A(x) + 2 - 2*(1+x)^3)^4 + 2^4*((1+x)^4 - 1)^4/(A(x) + 2 - 2*(1+x)^4)^5 + 2^5*((1+x)^5 - 1)^5/(A(x) + 2 - 2*(1+x)^5)^6 + ...
also,
1 = 1/(A(x) + 4) + 2*(1 + (1+x))/(A(x) + 2 + 2*(1+x))^2 + 2^2*(1 + (1+x)^2)^2/(A(x) + 2 + 2*(1+x)^2)^3 + 2^3*(1 + (1+x)^3)^3/(A(x) + 2 + 2*(1+x)^3)^4 + 2^4*(1 + (1+x)^4)^4/(A(x) + 2 + 2*(1+x)^4)^5 + 2^5*(1 + (1+x)^5)^5/(A(x) + 2 + 2*(1+x)^5)^6 + ...
PROG
(PARI) {a(n) = my(A=[1], X=x+x*O(x^n)); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, 2^m * ((1+X)^m - 1)^m / (Ser(A) + 2 - 2*(1+X)^m)^(m+1) ) )[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A323313.
Sequence in context: A177397 A360342 A375541 * A294454 A322729 A304861
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2019
STATUS
approved