login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323571
G.f.: Sum_{n>=0} 2^n * ((1+x)^n + i)^n / (3 + 2*i*(1+x)^n)^(n+1), where i^2 = -1.
2
1, 18, 1080, 109024, 15425932, 2807373808, 624567442464, 164229954020384, 49830967023579400, 17136446536264628328, 6586556828478666923776, 2798143974987211154322560, 1301956008571438833028276672, 658475124477897905982708920064, 359674624553169582199492194921216, 211016939776698518257518156591766656, 132339913526099601722463496476503304848, 88352431866089178236286985348733511803104, 62560734523453615823978316851314371901576832
OFFSET
0,2
COMMENTS
It is remarkable that the generating function results in a power series in x with only real coefficients.
FORMULA
G.f.: Sum_{n>=0} 2^n * ((1+x)^n + i)^n / (3 + 2*i*(1+x)^n)^(n+1).
G.f.: Sum_{n>=0} 2^n * ((1+x)^n - i)^n / (3 - 2*i*(1+x)^n)^(n+1).
G.f.: Sum_{n>=0} 2^n * ((1+x)^n + i)^n * (3 - 2*i*(1+x)^n)^(n+1) / (9 + 4*(1+x)^(2*n))^(n+1).
G.f.: Sum_{n>=0} 2^n * ((1+x)^n - i)^n * (3 + 2*i*(1+x)^n)^(n+1) / (9 + 4*(1+x)^(2*n))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 18*x + 1080*x^2 + 109024*x^3 + 15425932*x^4 + 2807373808*x^5 + 624567442464*x^6 + 164229954020384*x^7 + 49830967023579400*x^8 + ...
such that
A(x) = 1/(3+2*i) + 2*((1+x) + i)/(3 + 2*i*(1+x))^2 + 2^2*((1+x)^2 + i)^2/(3 + 2*i*(1+x)^2)^3 + 2^3*((1+x)^3 + i)^3/(3 + 2*i*(1+x)^3)^4 + 2^4*((1+x)^4 + i)^4/(3 + 2*i*(1+x)^4)^5 + 2^5*((1+x)^5 + i)^5/(3 + 2*i*(1+x)^5)^6 + 2^6*((1+x)^6 + i)^6/(3 + 2*i*(1+x)^6)^7 + ...
also
A(x) = 1/(3-2*i) + 2*((1+x) - i)/(3 - 2*i*(1+x))^2 + 2^2*((1+x)^2 - i)^2/(3 - 2*i*(1+x)^2)^3 + 2^3*((1+x)^3 - i)^3/(3 - 2*i*(1+x)^3)^4 + 2^4*((1+x)^4 - i)^4/(3 - 2*i*(1+x)^4)^5 + 2^5*((1+x)^5 - i)^5/(3 - 2*i*(1+x)^5)^6 + 2^6*((1+x)^6 - i)^6/(3 - 2*i*(1+x)^6)^7 + ...
RELATED INFINITE SERIES.
At x = -1/3, the g.f. as a power series in x diverges, but the related series converges:
S = Sum_{n>=0} 2^n * ((2/3)^n + i)^n / (3 + 2*i*(2/3)^n)^(n+1).
Equivalently,
S = Sum_{n>=0} 6^n * (2^n + 3^n*i)^n / (3^(n+1) + 2^(n+1)*i)^(n+1) ;
written explicitly,
S = 1/(3+2*i) + 6*(2+3*i)/(3^2+2^2*i)^2 + 6^2*(2^2+3^2*i)^2/(3^3+2^3*i)^3
+ 6^3*(2^3+3^3*i)^3/(3^4+2^4*i)^4 + 6^4*(2^4+3^4*i)^4/(3^5+2^5*i)^5
+ 6^5*(2^5+3^5*i)^5/(3^6+2^6*i)^6 + 6^6*(2^6+3^6*i)^6/(3^7+2^7*i)^7 + ...
which equals the real number
S = 0.398373937215203455798934836530015104419943236574659953950499...
PROG
(PARI) {a(n) = my(A = sum(m=0, n*40 + 400, 2^m*((1+x +x*O(x^n))^m + I)^m/(3 + 2*I*(1+x +x*O(x^n))^m)^(m+1)*1. )); round(polcoeff(A, n))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n*40 + 400, 2^m*((1+x +x*O(x^n))^m - I)^m/(3 - 2*I*(1+x +x*O(x^n))^m)^(m+1)*1. )); round(polcoeff(A, n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A146197 A301651 A159379 * A052135 A033518 A333006
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2019
STATUS
approved