login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323568
E.g.f. exp( Integral B(x) dx ) = (A(x) + C(x))/8 where A(x) = 3 + Integral B(x)*C(x) dx and C(x) = 5 + Integral A(x)*B(x) dx such that A(x)^2 - 3^2 = B(x)^2 - 4^2 = C(x)^2 - 5^2.
7
1, 4, 31, 380, 6017, 119812, 2863903, 79849340, 2544494081, 91218404356, 3633458059039, 159202837770620, 7609742731484033, 394049923598413828, 21974409170191973407, 1312944562859473313660, 83676651905307684333569, 5666190077265731685365764, 406257664391186624860008991, 30746316355830218639758848380, 2449407313095934366223281388417, 204888804298166571602163435568132
OFFSET
0,2
LINKS
FORMULA
E.g.f. exp( Integral B(x) dx ) where related series A(x), B(x), and C(x) satisfy the following relations.
(1a) A(x) = 3 + Integral B(x)*C(x) dx.
(1b) B(x) = 4 + Integral A(x)*C(x) dx.
(1c) C(x) = 5 + Integral A(x)*B(x) dx.
(2a) C(x)^2 - B(x)^2 = 9.
(2b) C(x)^2 - A(x)^2 = 16.
(2c) B(x)^2 - A(x)^2 = 7.
(3a) A(x)*B(x)*C(x) = A(x)*A'(x) = B(x)*B'(x) = C(x)*C'(x).
(3b) Integral 2*A(x)*B(x)*C(x) dx = A(x)^2 - 9 = B(x)^2 - 16 = C(x)^2 - 25.
(4a) B(x) + C(x) = 9 * exp( Integral A(x) dx ).
(4b) A(x) + C(x) = 8 * exp( Integral B(x) dx ).
(4c) A(x) + B(x) = 7 * exp( Integral C(x) dx ).
EXAMPLE
E.g.f. exp( Integral B(x) dx ) = 1 + 4*x + 31*x^2/2! + 380*x^3/3! + 6017*x^4/4! + 119812*x^5/5! + 2863903*x^6/6! + 79849340*x^7/7! + 2544494081*x^8/8! + 91218404356*x^9/9! + 3633458059039*x^10/10! + ...
RELATED SERIES.
A(x) = 3 + 20*x + 123*x^2/2! + 1540*x^3/3! + 23871*x^4/4! + 480260*x^5/5! + 11449599*x^6/6! + 319491220*x^7/7! + 10176946203*x^8/8! + 364884459380*x^9/9! + 14533663841187*x^10/10! + ... + A323563(n)*x^n/n! + ...
such that A(x) = 3 + Integral B(x)*C(x) dx.
B(x) = 4 + 15*x + 136*x^2/2! + 1470*x^3/3! + 24128*x^4/4! + 478320*x^5/5! + 11464768*x^6/6! + 319326960*x^7/7! + 10178837504*x^8/8! + 364859900160*x^9/9! + 14534008182784*x^10/10! + ... + A323564(n)*x^n/n! + ...
such that B(x) = 4 + Integral A(x)*C(x) dx.
C(x) = 5 + 12*x + 125*x^2/2! + 1500*x^3/3! + 24265*x^4/4! + 478236*x^5/5! + 11461625*x^6/6! + 319303500*x^7/7! + 10179006445*x^8/8! + 364862775468*x^9/9! + 14534000631125*x^10/10! + ... + A323565(n)*x^n/n! + ...
such that C(x) = 5 + Integral A(x)*B(x) dx.
A(x)^2 = 9 + 120*x + 1538*x^2/2! + 24000*x^3/3! + 480400*x^4/4! + 11444160*x^5/5! + 319475984*x^6/6! + 10177152000*x^7/7! + 364886675200*x^8/8! + 14533662074880*x^9/9! + 636813851059712*x^10/10! ...
such that C(x)^2 - A(x)^2 = 16 and B(x)^2 - A(x)^2 = 7.
A(x) + B(x) = 7 * exp( Integral C(x) dx ) = 7 + 35*x + 259*x^2/2! + 3010*x^3/3! + 47999*x^4/4! + 958580*x^5/5! + 22914367*x^6/6! + 638818180*x^7/7! + 20355783707*x^8/8! + 729744359540*x^9/9! + 29067672023971*x^10/10! + ...
A(x) + C(x) = 8 * exp( Integral B(x) dx ) = 8 + 32*x + 248*x^2/2! + 3040*x^3/3! + 48136*x^4/4! + 958496*x^5/5! + 22911224*x^6/6! + 638794720*x^7/7! + 20355952648*x^8/8! + 729747234848*x^9/9! + 29067664472312*x^10/10! + ...
B(x) + C(x) = 9 * exp( Integral A(x) dx ) = 9 + 27*x + 261*x^2/2! + 2970*x^3/3! + 48393*x^4/4! + 956556*x^5/5! + 22926393*x^6/6! + 638630460*x^7/7! + 20357843949*x^8/8! + 729722675628*x^9/9! + 29068008813909*x^10/10! + ...
exp( Integral A(x) dx ) = 1 + 3*x + 29*x^2/2! + 330*x^3/3! + 5377*x^4/4! + 106284*x^5/5! + 2547377*x^6/6! + 70958940*x^7/7! + 2261982661*x^8/8! + 81080297292*x^9/9! + 3229778757101*x^10/10! + ... + A323569(n)*x^n/n! + ...
exp( Integral C(x) dx ) = 1 + 5*x + 37*x^2/2! + 430*x^3/3! + 6857*x^4/4! + 136940*x^5/5! + 3273481*x^6/6! + 91259740*x^7/7! + 2907969101*x^8/8! + 104249194220*x^9/9! + 4152524574853*x^10/10! + ... + A323567(n)*x^n/n! + ...
A(x)*B(x)*C(x) = 60 + 769*x + 12000*x^2/2! + 240200*x^3/3! + 5722080*x^4/4! + 159737992*x^5/5! + 5088576000*x^6/6! + 182443337600*x^7/7! + 7266831037440*x^8/8! + 318406925529856*x^9/9! + 15219462171648000*x^10/10! + ... + A323566(n)*x^n/n! + ...
such that A(x)*B(x)*C(x) = A(x)*A'(x) = B(x)*B'(x) = C(x)*C'(x).
PROG
(PARI) {ac8(n) = my(A=3, B=4, C=5); for(i=1, n,
A = 3 + intformal(B*C +x*O(x^n));
B = 4 + intformal(A*C);
C = 5 + intformal(A*B); );
n! * polcoeff( (A+C)/8 , n)}
for(n=0, 30, print1(ac8(n), ", "))
CROSSREFS
Cf. A323563 (A), A323564 (B), A323565 (C), A323566 (A*B*C), A323567 ((A+B)/7), A323569 ((B+C)/9).
Sequence in context: A215529 A351798 A005046 * A174324 A211194 A237581
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 18 2019
STATUS
approved