OFFSET
2,2
FORMULA
The sequence a(n) can be obtained from the following three generating functions of hypergeometric type:
g1(t) = sum(a(n)*t^n/(n!*(n-1)!),n=2..infinity) = (t^2/(1-t/2))* 1F2(1;2,3;t/(1-t/2))/2.
g2(t) = sum(a(n)*t^n/(n!*(n-1)!*(n-2)!), n=2..infinity) = exp(t/2)*t^2* 0F2(;2,3;t)/2.
g3(t) = sum(a(n)*t^n/(n!*(n-1)!*(n-2)), n=3..infinity) = t^2*(t/(6*(1-t/2))* 2F3(1,1;2,3,4;t/(1-t/2))-log(1-t/2))/2.
Note the appearance of the factor (n-2) and not (n-2)! in the denominator of g3.
D-finite with recurrence 8*a(n) +4*(-3*n^2+9*n-8)*a(n-1) +6*(n-1)*(n-3)*(n-2)^2*a(n-2) -(n-1)*(n-4)*(n-2)^2*(n-3)^2*a(n-3)=0. - R. J. Mathar, Jul 27 2022
MAPLE
A174324 := proc(n)
n!*(n-1)!*2^(1-n)*hypergeom([2-n], [2, 3], -2) ;
simplify(%) ;
end proc:
seq(A174324(n), n=2..40) ; # R. J. Mathar, Jul 27 2022
MATHEMATICA
Table[HypergeometricPFQ[{-n, -n + 1, -n + 2}, {}, -1/2], {n, 2, 20}] (* Vaclav Kotesovec, Jun 08 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson and Katarzyna Gorska, Mar 15 2010
STATUS
approved