login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174324
a(n) = 3F0(-n,-n+1,-n+2;;-1/2) = n!*(n-1)!*2^(1-n)* 1F2(-n+2;2,3;-2), where nFm(;;) are generalized hypergeometric series.
1
1, 4, 31, 391, 7261, 185956, 6271189, 269066701, 14300511481, 921666527596, 70789188893611, 6386088654729499, 668423261212035421, 80325071500899911596, 10981857825124725031081, 1694577083441728891610041
OFFSET
2,2
FORMULA
The sequence a(n) can be obtained from the following three generating functions of hypergeometric type:
g1(t) = sum(a(n)*t^n/(n!*(n-1)!),n=2..infinity) = (t^2/(1-t/2))* 1F2(1;2,3;t/(1-t/2))/2.
g2(t) = sum(a(n)*t^n/(n!*(n-1)!*(n-2)!), n=2..infinity) = exp(t/2)*t^2* 0F2(;2,3;t)/2.
g3(t) = sum(a(n)*t^n/(n!*(n-1)!*(n-2)), n=3..infinity) = t^2*(t/(6*(1-t/2))* 2F3(1,1;2,3,4;t/(1-t/2))-log(1-t/2))/2.
Note the appearance of the factor (n-2) and not (n-2)! in the denominator of g3.
D-finite with recurrence 8*a(n) +4*(-3*n^2+9*n-8)*a(n-1) +6*(n-1)*(n-3)*(n-2)^2*a(n-2) -(n-1)*(n-4)*(n-2)^2*(n-3)^2*a(n-3)=0. - R. J. Mathar, Jul 27 2022
MAPLE
A174324 := proc(n)
n!*(n-1)!*2^(1-n)*hypergeom([2-n], [2, 3], -2) ;
simplify(%) ;
end proc:
seq(A174324(n), n=2..40) ; # R. J. Mathar, Jul 27 2022
MATHEMATICA
Table[HypergeometricPFQ[{-n, -n + 1, -n + 2}, {}, -1/2], {n, 2, 20}] (* Vaclav Kotesovec, Jun 08 2021 *)
CROSSREFS
Sequence in context: A351798 A005046 A323568 * A211194 A237581 A319074
KEYWORD
nonn
AUTHOR
Karol A. Penson and Katarzyna Gorska, Mar 15 2010
STATUS
approved