|
|
A319074
|
|
a(n) is the sum of the first n nonnegative powers of the n-th prime.
|
|
2
|
|
|
1, 4, 31, 400, 16105, 402234, 25646167, 943531280, 81870575521, 15025258332150, 846949229880161, 182859777940000980, 23127577557875340733, 1759175174860440565844, 262246703278703657363377, 74543635579202247026882160, 21930887362370823132822661921, 2279217547342466764922495586798
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..18.
|
|
FORMULA
|
a(n) = Sum_{k=0..n-1} A000040(n)^k.
a(n) = Sum_{k=0..n-1} A319075(k,n).
a(n) = (A000040(n)^n - 1)/(A000040(n) - 1).
a(n) = (A062457(n) - 1)/A006093(n).
a(n) = A069459(n)/A006093(n).
a(n) = A000203(A000040(n)^(n-1)).
a(n) = A000203(A093360(n)).
|
|
EXAMPLE
|
For n = 4 the 4th prime is 7 and the sum of the first four nonnegative powers of 7 is 7^0 + 7^1 + 7^2 + 7^3 = 1 + 7 + 49 + 343 = 400, so a(4) = 400.
|
|
PROG
|
(PARI) a(n) = sum(k=0, n-1, prime(n)^k); \\ Michel Marcus, Sep 13 2018
|
|
CROSSREFS
|
Main diagonal of A319076.
Cf. A000040, A000203, A006093, A062457, A069459, A093360, A319075.
Cf. A000079, A000244, A000351, A000420, A001020, A001022, A001026, A001029, A009967, A009973, A009975, A009981, A009985, A009987, A009991.
Cf. A126646, A003462, A003463, A023000, A016123, A091030, A091045, A218722, A218726, A218732, A218734, A218740, A218744, A218746, A218750.
Sequence in context: A174324 A211194 A237581 * A195195 A141827 A262529
Adjacent sequences: A319071 A319072 A319073 * A319075 A319076 A319077
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Omar E. Pol, Sep 11 2018
|
|
STATUS
|
approved
|
|
|
|