The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001029 Powers of 19. (Formerly M5079 N2198) 38
 1, 19, 361, 6859, 130321, 2476099, 47045881, 893871739, 16983563041, 322687697779, 6131066257801, 116490258898219, 2213314919066161, 42052983462257059, 799006685782884121, 15181127029874798299, 288441413567621167681, 5480386857784802185939, 104127350297911241532841, 1978419655660313589123979, 37589973457545958193355601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Same as Pisot sequences E(1, 19), L(1, 19), P(1, 19), T(1, 19). Essentially same as Pisot sequences E(19, 361), L(19, 361), P(19, 361), T(19, 361). See A008776 for definitions of Pisot sequences. The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 19-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..100 P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 283 Tanya Khovanova, Recursive Sequences Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1. Index entries for linear recurrences with constant coefficients, signature (19). FORMULA G.f.: 1/(1-19x), e.g.f.: exp(19x) a(n) = 19^n; a(n) = 19*a(n-1) with a(0)=1. - Vincenzo Librandi, Nov 21 2010 MAPLE A001029:=-1/(-1+19*z); # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA Table[19^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *) PROG (Magma) [ 19^n: n in [0..20] ]; // Vincenzo Librandi, Nov 21 2010 (Magma) [ n eq 1 select 1 else 19*Self(n-1): n in [1..21] ]; (PARI) a(n)=19^n \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Sequence in context: A171293 A045609 A128360 * A057685 A243399 A041686 Adjacent sequences: A001026 A001027 A001028 * A001030 A001031 A001032 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 12:15 EDT 2023. Contains 365501 sequences. (Running on oeis4.)