login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001026
Powers of 17.
(Formerly M5048 N2182)
31
1, 17, 289, 4913, 83521, 1419857, 24137569, 410338673, 6975757441, 118587876497, 2015993900449, 34271896307633, 582622237229761, 9904578032905937, 168377826559400929, 2862423051509815793, 48661191875666868481, 827240261886336764177, 14063084452067724991009, 239072435685151324847153, 4064231406647572522401601
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 17), L(1, 17), P(1, 17), T(1, 17). Essentially same as Pisot sequences E(17, 289), L(17, 289), P(17, 289), T(17, 289). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 17-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(17*n) = 17*n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
G.f.: 1/(1-17x), e.g.f.: exp(17x).
a(n)=17^n ; a(n)=17*a(n-1) n>0, a(0)=1. - Vincenzo Librandi, Nov 21 2010
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (4(k+1)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
MAPLE
A001026:=-1/(-1+17*z); [Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
Table[17^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
PROG
(Sage) [lucas_number1(n, 17, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
(Magma)[17^n: n in [0..100]]; // Vincenzo Librandi, Nov 21 2010
(Maxima) A001026(n):=17^n$
makelist(A001026(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(PARI) a(n)=17^n \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Sequence in context: A171291 A128358 A015969 * A368115 A178765 A041546
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Sep 19 2000
STATUS
approved