login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001025 Powers of 16.
(Formerly M5021 N2164)
53
1, 16, 256, 4096, 65536, 1048576, 16777216, 268435456, 4294967296, 68719476736, 1099511627776, 17592186044416, 281474976710656, 4503599627370496, 72057594037927936, 1152921504606846976, 18446744073709551616, 295147905179352825856, 4722366482869645213696, 75557863725914323419136, 1208925819614629174706176 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Convolution-square (auto-convolution) of A098430. - R. J. Mathar, May 22 2009

Subsequence of A161441: A160700(a(n)) = 1. - Reinhard Zumkeller, Jun 10 2009

The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 16-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 280

Tanya Khovanova, Recursive Sequences

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

Index entries for linear recurrences with constant coefficients, signature (16).

FORMULA

G.f.: 1/(1-16x), e.g.f.: exp(16x).

MAPLE

A001025:=-1/(-1+16*z); # Simon Plouffe in his 1992 dissertation

MATHEMATICA

lst={}; Do[AppendTo[lst, 16^n], {n, 0, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 01 2009 *)

PROG

(Sage) [lucas_number1(n, 16, 0) for n in xrange(1, 18)] # Zerinvary Lajos, Apr 29 2009

(PARI) a(n)=1<<(4*n) \\ Charles R Greathouse IV, Feb 01 2012

(Maxima) A001025(n):=16^n$

makelist(A001025(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */

(Haskell)

a001025 = (16 ^)

a001025_list = iterate (* 16) 1  -- Reinhard Zumkeller, Nov 07 2012

CROSSREFS

Partial sums give A131865.

Sequence in context: A220803 A229101 A220175 * A144318 A230142 A247165

Adjacent sequences:  A001022 A001023 A001024 * A001026 A001027 A001028

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 22 21:40 EDT 2017. Contains 286906 sequences.