|
|
A001018
|
|
Powers of 8: a(n) = 8^n.
(Formerly M4555 N1937)
|
|
109
|
|
|
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Same as Pisot sequences E(1, 8), L(1, 8), P(1, 8), T(1, 8). Essentially same as Pisot sequences E(8, 64), L(8, 64), P(8, 64), T(8, 64). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1..2n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1..2n} -> {1,2,3} such that for fixed y_1,y_2,...,y_n in {1,2,3} we have f(X_i)<>{y_i}, (i=1..n). - Milan Janjic, May 24 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 8-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n) is equal to the determinant of a 3 X 3 matrix with rows 2^(n+2), 2^(n+1), 2^n; 2^(n+3), 2^(n+4), 2(n+3); 2^n, 2^(n+1), 2^(n+2) when it is divided by 144. - J. M. Bergot, May 07 2014
a(n) gives the number of small squares in the n-th iteration of the Sierpinski carpet fractal. Equivalently, the number of vertices in the n-Sierpinski carpet graph. - Allan Bickle, Nov 27 2022
|
|
REFERENCES
|
K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 8^n.
a(0) = 1; a(n) = 8*a(n-1) for n > 0.
G.f.: 1/(1-8*x).
E.g.f.: exp(8*x).
a(n) = (-1)^n*(1 + sqrt(-3))^(3*n) (see Nunn, p. 9).
a(n) = (-1)^n*Sum_{k=0..floor(3*n/2)} (-3)^k*binomial(3*n, 2*k) (see Nunn, p. 9). (End)
|
|
EXAMPLE
|
For n=1, the 1st order Sierpinski carpet graph is an 8-cycle.
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
(Maxima) makelist(8^n, n, 0, 20); /* Martin Ettl, Nov 12 2012 */
(Haskell)
a001018 = (8 ^)
(Python)
|
|
CROSSREFS
|
Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001019 (powers of 9), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49), A165800 (powers of 50), A159991 (powers of 60).
Cf. A271939 (number of edges in the n-Sierpinski carpet graph).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|