The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001018 Powers of 8: a(n) = 8^n. (Formerly M4555 N1937) 109
 1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Same as Pisot sequences E(1, 8), L(1, 8), P(1, 8), T(1, 8). Essentially same as Pisot sequences E(8, 64), L(8, 64), P(8, 64), T(8, 64). See A008776 for definitions of Pisot sequences. If X_1, X_2, ..., X_n is a partition of the set {1..2n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1..2n} -> {1,2,3} such that for fixed y_1,y_2,...,y_n in {1,2,3} we have f(X_i)<>{y_i}, (i=1..n). - Milan Janjic, May 24 2007 This is the auto-convolution (convolution square) of A059304. - R. J. Mathar, May 25 2009 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 8-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011 a(n) is equal to the determinant of a 3 X 3 matrix with rows 2^(n+2), 2^(n+1), 2^n; 2^(n+3), 2^(n+4), 2(n+3); 2^n, 2^(n+1), 2^(n+2) when it is divided by 144. - J. M. Bergot, May 07 2014 a(n) gives the number of small squares in the n-th iteration of the Sierpinski carpet fractal. Equivalently, the number of vertices in the n-Sierpinski carpet graph. - Allan Bickle, Nov 27 2022 REFERENCES K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..100 Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208. Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26. P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 273 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Tanya Khovanova, Recursive Sequences Caroline Nunn, A Proof of a Generalization of Niven's Theorem Using Algebraic Number Theory, Rose-Hulman Undergraduate Mathematics Journal: Vol. 22, Iss. 2, Article 3 (2021). See table at p. 9. Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1. Eric Weisstein's World of Mathematics, Sierpiński Carpet Index entries for linear recurrences with constant coefficients, signature (8). FORMULA a(n) = 8^n. a(0) = 1; a(n) = 8*a(n-1) for n > 0. G.f.: 1/(1-8*x). E.g.f.: exp(8*x). Sum_{n>=0} 1/a(n) = 8/7. - Gary W. Adamson, Aug 29 2008 a(n) = A157176(A008588(n)); a(n+1) = A157176(A016969(n)). - Reinhard Zumkeller, Feb 24 2009 From Stefano Spezia, Dec 28 2021: (Start) a(n) = (-1)^n*(1 + sqrt(-3))^(3*n) (see Nunn, p. 9). a(n) = (-1)^n*Sum_{k=0..floor(3*n/2)} (-3)^k*binomial(3*n, 2*k) (see Nunn, p. 9). (End) EXAMPLE For n=1, the 1st order Sierpinski carpet graph is an 8-cycle. MAPLE seq(8^n, n=0..23); # Nathaniel Johnston, Jun 26 2011 A001018 := n -> 8^n; # M. F. Hasler, Apr 19 2015 MATHEMATICA Table[8^n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *) PROG (Maxima) makelist(8^n, n, 0, 20); /* Martin Ettl, Nov 12 2012 */ (PARI) a(n)=8^n \\ Charles R Greathouse IV, May 10 2014 (Haskell) a001018 = (8 ^) a001018_list = iterate (* 8) 1 -- Reinhard Zumkeller, Apr 29 2015 (Magma) [8^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016 (Python) print([8**n for n in range(25)]) # Michael S. Branicky, Dec 29 2021 CROSSREFS Cf. A013730, A103333, A013731, A067417, A083233, A055274. Cf. A008588, A016969, A157176. Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001019 (powers of 9), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49), A165800 (powers of 50), A159991 (powers of 60). Cf. A032766 (floor(3*n/2)). Cf. A271939 (number of edges in the n-Sierpinski carpet graph). Sequence in context: A190130 A125908 A206454 * A097682 A050738 A046238 Adjacent sequences: A001015 A001016 A001017 * A001019 A001020 A001021 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 07:29 EDT 2023. Contains 365544 sequences. (Running on oeis4.)