|
|
|
|
1, 49, 2401, 117649, 5764801, 282475249, 13841287201, 678223072849, 33232930569601, 1628413597910449, 79792266297612001, 3909821048582988049, 191581231380566414401, 9387480337647754305649, 459986536544739960976801
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Same as Pisot sequences E(1, 49), L(1, 49), P(1, 49), T(1, 49). Essentially same as Pisot sequences E(49, 2401), L(49, 2401), P(49, 2401), T(49, 2401). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 49-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 49^n;
a(n) = 49*a(n-1), a(0)=1. (End)
|
|
MATHEMATICA
|
49^Range[0, 20] (* or *) Join[{1}, NestList[49#&, 49, 20]] (* Harvey P. Dale, May 10 2019 *)
|
|
PROG
|
(Maxima) makelist(49^n, n, 0, 20); /* Martin Ettl, Nov 12 2012 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Douglas Winston (douglas.winston(AT)srupc.com), Oct 02 2003
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|