login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087755
Triangle read by rows: Stirling numbers of the first kind (A008275) mod 2.
3
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Essentially also parity of Mitrinovic's triangles A049458, A049460, A051339, A051380.
REFERENCES
Das, Sajal K., Joydeep Ghosh, and Narsingh Deo. "Stirling networks: a versatile combinatorial topology for multiprocessor systems." Discrete applied mathematics 37 (1992): 119-146. See p. 122. - N. J. A. Sloane, Nov 20 2014
FORMULA
T(n, k) = A087748(n, k) = A008275(n, k) mod 2 = A047999([n/2], k-[(n+1)/ 2]) = T(n-2, k-2) XOR T(n-2, k-1) with T(1, 1) = T(2, 1) = T(2, 2) = 1; T(2n, k) = T(2n-1, k-1) XOR T(2n-1, k); T(2n+1, k) = T(2n, k-1). - Henry Bottomley, Dec 01 2003
EXAMPLE
Triangle begins:
1
1 1
0 1 1
0 1 0 1
0 0 1 0 1
0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1
PROG
(PARI) p = 2; s=14; S1T = matrix(s, s, n, k, if(k==1, (-1)^(n-1)*(n-1)!)); for(n=2, s, for(k=2, n, S1T[n, k]=-(n-1)*S1T[n-1, k]+S1T[n-1, k-1]));
S1TMP = matrix(s, s, n, k, S1T[n, k]%p);
for(n=1, s, for(k=1, n, print1(S1TMP[n, k], " ")); print()) /* Gerald McGarvey, Oct 17 2009 */
CROSSREFS
Sequence in context: A118274 A275737 A080909 * A050072 A267576 A156707
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 02 2003
EXTENSIONS
Edited and extended by Henry Bottomley, Dec 01 2003
STATUS
approved