login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080909
a(n) = (2n+1)! modulo 4n+3, |a(n)| <= 1.
0
1, -1, -1, 0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, -1, 1, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
If 4n+3 is composite, then a(n)=0. If 4n+3 is prime, then a(n)=(-1)^m where m is the number of quadratic non-residues less than or equal to 2n+1. Is there a way to predict whether a(n)=1 or a(n)=-1?
REFERENCES
G. H. Hardy and E. M. Wright, An introduction to the theory of number, fourth edition, 1960, section 7.7: the residue of ((p-1)/2)!.
FORMULA
a(n) = mods((2*n+1)!, 4*n+3).
EXAMPLE
a(3) = 0 since 7! == 0 (mod 15).
a(4) = 1 since 9! == -1 (mod 19).
MAPLE
seq(mods((2*n+1)!, 4*n+3), n=0..100);
MATHEMATICA
a[ n_] := Mod[(2*n+1)!, 4*n+3, -1]; (* Michael Somos, Jul 25 2023 *)
PROG
(PARI) a(n)= {v =(2*n+1)! % (4*n+3); if (2*v > 4*n+3, v -= 4*n+3); return (v); } \\ Michel Marcus, Jul 21 2013
CROSSREFS
Sequence in context: A267533 A118274 A275737 * A087755 A050072 A267576
KEYWORD
sign
AUTHOR
Christophe Leuridan (ChristopheLeuridan(AT)ujf-grenoble.fr), Apr 01 2003
EXTENSIONS
More terms from Michel Marcus, Jul 21 2013
Name edited by Michael Somos, Jul 25 2023
STATUS
approved