login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170768 Expansion of g.f.: (1+x)/(1-48*x). 50
1, 49, 2352, 112896, 5419008, 260112384, 12485394432, 599298932736, 28766348771328, 1380784741023744, 66277667569139712, 3181328043318706176, 152703746079297896448, 7329779811806299029504, 351829430966702353416192, 16887812686401712963977216 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..600

Index entries for linear recurrences with constant coefficients, signature (48).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*49^k. - Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 49*48^(n-1). - Vincenzo Librandi, Dec 05 2009

E.g.f.: (49*exp(48*x) - 1)/48. - G. C. Greubel, Oct 11 2019

MAPLE

k:=49; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019

MATHEMATICA

CoefficientList[Series[(1+x)/(1-48*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 09 2012 *)

With[{k = 49}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)

PROG

(PARI) vector(26, n, k=49; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 10 2019

(MAGMA) k:=49; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 10 2019

(Sage) k=49; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019

(GAP) k:=49;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019

CROSSREFS

Cf. A003945.

Sequence in context: A170634 A170682 A170730 * A218751 A120999 A087752

Adjacent sequences:  A170765 A170766 A170767 * A170769 A170770 A170771

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 09:28 EDT 2021. Contains 343940 sequences. (Running on oeis4.)