login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170765 Expansion of g.f.: (1+x)/(1-45*x). 50
1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750, 6422927569141882324218750 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..600

Index entries for linear recurrences with constant coefficients, signature (45).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*46^k. - Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 46*45^(n-1). - Vincenzo Librandi, Dec 05 2009

E.g.f.: (46*exp(45*x) - 1)/45. - G. C. Greubel, Oct 10 2019

MAPLE

k:=46; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019

MATHEMATICA

CoefficientList[Series[(1+x)/(1-45x), {x, 0, 15}], x]  (* Harvey P. Dale, Mar 26 2011 *)

With[{k = 46}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)

PROG

(PARI) a(n)=46*45^n\45 \\ Charles R Greathouse IV, Jun 16 2011

(PARI) vector(26, n, k=46; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 10 2019

(MAGMA) k:=46; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 10 2019

(Sage) k=46; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019

(GAP) k:=46;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019

CROSSREFS

Cf. A003945.

Sequence in context: A170631 A170679 A170727 * A218748 A158752 A223738

Adjacent sequences:  A170762 A170763 A170764 * A170766 A170767 A170768

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 08:27 EDT 2020. Contains 336293 sequences. (Running on oeis4.)