The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170765 Expansion of g.f.: (1+x)/(1-45*x). 50
1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750, 6422927569141882324218750 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*46^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 46*45^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (46*exp(45*x) - 1)/45. - G. C. Greubel, Oct 10 2019
MAPLE
k:=46; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-45x), {x, 0, 15}], x] (* Harvey P. Dale, Mar 26 2011 *)
With[{k = 46}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)
PROG
(PARI) a(n)=46*45^n\45 \\ Charles R Greathouse IV, Jun 16 2011
(PARI) vector(26, n, k=46; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 10 2019
(Magma) k:=46; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 10 2019
(Sage) k=46; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019
(GAP) k:=46;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170631 A170679 A170727 * A218748 A158752 A223738
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 16:32 EDT 2024. Contains 372781 sequences. (Running on oeis4.)