login
A170766
Expansion of g.f.: (1+x)/(1-46*x).
50
1, 47, 2162, 99452, 4574792, 210440432, 9680259872, 445291954112, 20483429889152, 942237774900992, 43342937645445632, 1993775131690499072, 91713656057762957312, 4218828178657096036352, 194066096218226417672192, 8927040426038415212920832
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*47^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 47*46^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (47*exp(46*x) - 1)/46. - G. C. Greubel, Oct 11 2019
MAPLE
k:=47; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-46*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 09 2012 *)
With[{k = 47}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)
PROG
(PARI) vector(26, n, k=47; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 10 2019
(Magma) k:=47; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 10 2019
(Sage) k=47; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019
(GAP) k:=47;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170632 A170680 A170728 * A218749 A049668 A009991
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved