login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170764 Expansion of g.f.: (1+x)/(1-44*x). 50
1, 45, 1980, 87120, 3833280, 168664320, 7421230080, 326534123520, 14367501434880, 632170063134720, 27815482777927680, 1223881242228817920, 53850774658067988480, 2369434084954991493120, 104255099738019625697280, 4587224388472863530680320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..600

Index entries for linear recurrences with constant coefficients, signature (44).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*45^k. - Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 45*44^(n-1). - Vincenzo Librandi, Dec 05 2009

E.g.f.: (45*exp(44*x) - 1)/44. - G. C. Greubel, Oct 10 2019

MAPLE

k:=45; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019

MATHEMATICA

CoefficientList[Series[(1+x)/(1-44*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 09 2012 *)

With[{k = 45}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)

PROG

(PARI) vector(26, n, k=45; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 10 2019

(MAGMA) k:=45; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 10 2019

(Sage) k=45; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019

(GAP) k:=45;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019

CROSSREFS

Cf. A003945.

Sequence in context: A170630 A170678 A170726 * A218747 A121009 A264061

Adjacent sequences:  A170761 A170762 A170763 * A170765 A170766 A170767

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 04:44 EDT 2020. Contains 337165 sequences. (Running on oeis4.)