login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170761
Expansion of g.f.: (1+x)/(1-41*x).
50
1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482, 1593027542186453469690762
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*42^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 42*41^(n-1). - Vincenzo Librandi, Dec 05 2009
a(0)=1, a(1)=42, a(n) = 41*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (42*exp(41*x) - 1)/41. - G. C. Greubel, Oct 10 2019
MAPLE
k:=42; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-41*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
With[{k = 42}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)
Join[{1}, NestList[41#&, 42, 20]] (* Harvey P. Dale, Feb 02 2022 *)
PROG
(PARI) vector(26, n, k=42; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 10 2019
(Magma) k:=42; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 10 2019
(Sage) k=42; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019
(GAP) k:=42;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170627 A170675 A170723 * A218744 A158727 A208779
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved