login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170758
Expansion of g.f.: (1+x)/(1-38*x).
54
1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949251072, 244850262071540736, 9304309958718547968, 353563778431304822784, 13435423580389583265792, 510546096054804164100096
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*39^k. - Philippe Deléham, Dec 04 2009
a(0)=1; for n>0, a(n) = 39*38^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (39*exp(38*x) - 1)/38. - G. C. Greubel, Oct 09 2019
MAPLE
k:=39; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-38x), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)
With[{k = 39}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)
PROG
(Magma) [1] cat [39*38^(n-1): n in [1..20]]; // Vincenzo Librandi, Apr 28 2014
(PARI) vector(26, n, k=39; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019
(Sage) k=39; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019
(GAP) k:=39;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170624 A170672 A170720 * A218741 A112617 A009983
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved