login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170758 Expansion of g.f.: (1+x)/(1-38*x). 50
1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949251072, 244850262071540736, 9304309958718547968, 353563778431304822784, 13435423580389583265792, 510546096054804164100096 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (38).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*39^k. - Philippe Deléham, Dec 04 2009

a(0)=1; for n>0, a(n) = 39*38^(n-1). - Vincenzo Librandi, Dec 05 2009

E.g.f.: (39*exp(38*x) - 1)/38. - G. C. Greubel, Oct 09 2019

MAPLE

k:=39; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019

MATHEMATICA

CoefficientList[Series[(1+x)/(1-38x), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)

With[{k = 39}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)

PROG

(MAGMA) [1] cat [39*38^(n-1): n in [1..20]]; // Vincenzo Librandi, Apr 28 2014

(PARI) vector(26, n, k=39; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019

(Sage) k=39; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019

(GAP) k:=39;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019

CROSSREFS

Cf. A003945.

Sequence in context: A170624 A170672 A170720 * A218741 A112617 A009983

Adjacent sequences:  A170755 A170756 A170757 * A170759 A170760 A170761

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 12:49 EDT 2020. Contains 337272 sequences. (Running on oeis4.)