login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170759 Expansion of g.f.: (1+x)/(1-39*x). 50
1, 40, 1560, 60840, 2372760, 92537640, 3608967960, 140749750440, 5489240267160, 214080370419240, 8349134446350360, 325616243407664040, 12699033492898897560, 495262306223057004840, 19315229942699223188760, 753293967765269704361640 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..600

Index entries for linear recurrences with constant coefficients, signature (39).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*40^k. - Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 40*39^(n-1). - Vincenzo Librandi, Dec 05 2009

a(0)=1, a(1)=40, a(n) = 39*a(n-1). - Vincenzo Librandi, Dec 10 2012

E.g.f.: (40*exp(39*x) - 1)/39. - G. C. Greubel, Oct 10 2019

MAPLE

k:=40; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019

MATHEMATICA

CoefficientList[Series[(1+x)/(1-39*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)

With[{k = 40}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)

PROG

(MAGMA) [1] cat [40*39^(n-1): n in [1..20]]; // Vincenzo Librandi, Dec 11 2012

(PARI) vector(26, n, k=40; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 10 2019

(Sage) k=40; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019

(GAP) k:=40;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019

CROSSREFS

Cf. A003945.

Sequence in context: A170673 A170721 A063820 * A218742 A158703 A209223

Adjacent sequences:  A170756 A170757 A170758 * A170760 A170761 A170762

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 00:14 EDT 2020. Contains 337378 sequences. (Running on oeis4.)