OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..600
Index entries for linear recurrences with constant coefficients, signature (43).
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*44^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 44*43^(n-1). - Vincenzo Librandi, Dec 05 2009
a(0)=1, a(1)=44, a(n) = 43*a(n-1). - Vincenzo Librandi, Dec 11 2012
E.g.f.: (44*exp(43*x) - 1)/43. - G. C. Greubel, Oct 10 2019
MAPLE
k:=44; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-43*x), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 09 2012 *)
Join[{1}, NestList[43#&, 44, 20]] (* Harvey P. Dale, Jan 15 2013 *)
With[{k = 44}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)
PROG
(Magma) [1] cat [44*43^(n-1): n in [1..20]]; // Vincenzo Librandi, Dec 11 2012
(PARI) a(n)=44*43^n\43 \\ Charles R Greathouse IV, Jul 01 2013
(Sage) k=44; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019
(GAP) k:=44;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved