|
|
A158751
|
|
a(n) = Hermite(n, 22).
|
|
1
|
|
|
1, 44, 1934, 84920, 3724876, 163215184, 7144219336, 312387068576, 13645011946640, 595382332554944, 25951212417378016, 1129945699713533824, 49146684114213171904, 2135335404232254752000, 92676943999249666618496
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The first negative term is a(257). - Georg Fischer, Feb 16 2019
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..662
|
|
FORMULA
|
From G. C. Greubel, Jul 13 2018: (Start)
E.g.f.: exp(44*x - x^2).
a(n) = 44*a(n-1) - 2*(n-1)*a(n-2). (End)
|
|
MATHEMATICA
|
Table[HermiteH[n, 22], {n, 0, 50}] (* or *) With[{nmax = 50}, CoefficientList[Series[Exp[44*x - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 13 2018 *)
|
|
PROG
|
(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(44*x - x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 13 2018
(PARI) x='x+O('x^30); Vec(serlaplace(exp(44*x - x^2))) \\ G. C. Greubel, Jul 13 2018
(PARI) for(n=0, 30, print1(polhermite(n, 22), ", ")) \\ G. C. Greubel, Jul 13 2018
|
|
CROSSREFS
|
Sequence in context: A063821 A170763 A218746 * A206992 A206934 A206869
Adjacent sequences: A158748 A158749 A158750 * A158752 A158753 A158754
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
N. J. A. Sloane, Nov 11 2009
|
|
STATUS
|
approved
|
|
|
|