login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170767
Expansion of g.f.: (1+x)/(1-47*x).
50
1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696, 12320015337008035648049712
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*48^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 48*47^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (48*exp(47*x) - 1)/47. - G. C. Greubel, Oct 11 2019
MAPLE
k:=48; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 10 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-47*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 09 2012 *)
With[{k = 48}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 10 2019 *)
Join[{1}, NestList[47#&, 48, 20]] (* Harvey P. Dale, Nov 07 2021 *)
PROG
(PARI) vector(26, n, k=48; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 10 2019
(Magma) k:=48; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 10 2019
(Sage) k=48; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 10 2019
(GAP) k:=48;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 10 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170681 A170729 A063822 * A218750 A263504 A158783
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved