login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158783
a(n) = Hermite(n, 24).
1
1, 48, 2302, 110304, 5280780, 252595008, 12071752584, 576412983936, 27498818692752, 1310720689509120, 62419614359968224, 2969927075488292352, 141183268107518731968, 6705518619349180118016, 318194128757965158633600
OFFSET
0,2
COMMENTS
The first negative term is a(304). - Georg Fischer, Feb 16 2019
LINKS
FORMULA
From G. C. Greubel, Jul 13 2018: (Start)
E.g.f.: exp(48*x - x^2).
a(n) = 48*a(n-1) - 2*(n-1)*a(n-2). (End)
MATHEMATICA
HermiteH[Range[0, 20], 24] (* Harvey P. Dale, Aug 10 2011 *)
With[{nmax = 50}, CoefficientList[Series[Exp[48*x - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 13 2018 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(48*x - x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 13 2018
(PARI) x='x+O('x^30); Vec(serlaplace(exp(48*x - x^2))) \\ G. C. Greubel, Jul 13 2018
(PARI) for(n=0, 30, print1(polhermite(n, 24), ", ")) \\ G. C. Greubel, Jul 13 2018
CROSSREFS
Sequence in context: A170767 A218750 A263504 * A227139 A009992 A042105
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 11 2009
STATUS
approved