login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158785
Expansion of e.g.f.: exp(t*x)/(1 - x^2/t - t^3*x^3).
1
1, 0, 1, 2, 0, 0, 1, 0, 6, 0, 0, 7, 24, 0, 0, 12, 0, 0, 25, 0, 120, 0, 0, 260, 0, 0, 61, 720, 0, 0, 360, 0, 0, 1470, 0, 0, 841, 0, 5040, 0, 0, 15960, 0, 0, 5082, 0, 0, 5251, 40320, 0, 0, 20160, 0, 0, 122640, 0, 0, 134456, 0, 0, 20497, 0, 362880, 0, 0, 1512000
OFFSET
0,4
FORMULA
T(n, k) = coefficients of e.g.f.: t^floor(n/2)*exp(t*x)/(1 - x^2/t - t^3*x^3).
From G. C. Greubel, Dec 05 2021: (Start)
T(n, floor(n/2) + n) = A330044(n).
T(n, 0) = A005359(n).
T(n, 1) = A005212(n). (End)
EXAMPLE
Irregular triangle begins as:
1;
0, 1;
2, 0, 0, 1;
0, 6, 0, 0, 7;
24, 0, 0, 12, 0, 0, 25;
0, 120, 0, 0, 260, 0, 0, 61;
720, 0, 0, 360, 0, 0, 1470, 0, 0, 841;
0, 5040, 0, 0, 15960, 0, 0, 5082, 0, 0, 5251;
40320, 0, 0, 20160, 0, 0, 122640, 0, 0, 134456, 0, 0, 20497;
MATHEMATICA
Table[CoefficientList[Expand[t^Floor[n/2]*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
PROG
(Sage)
f(x, t) = exp(t*x)/(1 - x^2/t - t^3*x^3)
def A158785(n, k): return ( factorial(n)*t^(n//2)*( f(x, t) ).series(x, 20).list()[n] ).series(t, 2*n+1).list()[k]
flatten([[A158785(n, k) for k in (0..n+(n//2))] for n in (0..10)]) # G. C. Greubel, Dec 05 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 26 2009
EXTENSIONS
Edited by G. C. Greubel, Dec 05 2021
STATUS
approved