Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Dec 06 2021 03:16:54
%S 1,0,1,2,0,0,1,0,6,0,0,7,24,0,0,12,0,0,25,0,120,0,0,260,0,0,61,720,0,
%T 0,360,0,0,1470,0,0,841,0,5040,0,0,15960,0,0,5082,0,0,5251,40320,0,0,
%U 20160,0,0,122640,0,0,134456,0,0,20497,0,362880,0,0,1512000
%N Expansion of e.g.f.: exp(t*x)/(1 - x^2/t - t^3*x^3).
%H G. C. Greubel, <a href="/A158785/b158785.txt">Rows n = 0..50 of the irregular triangle, flattened</a>
%F T(n, k) = coefficients of e.g.f.: t^floor(n/2)*exp(t*x)/(1 - x^2/t - t^3*x^3).
%F From _G. C. Greubel_, Dec 05 2021: (Start)
%F T(n, floor(n/2) + n) = A330044(n).
%F T(n, 0) = A005359(n).
%F T(n, 1) = A005212(n). (End)
%e Irregular triangle begins as:
%e 1;
%e 0, 1;
%e 2, 0, 0, 1;
%e 0, 6, 0, 0, 7;
%e 24, 0, 0, 12, 0, 0, 25;
%e 0, 120, 0, 0, 260, 0, 0, 61;
%e 720, 0, 0, 360, 0, 0, 1470, 0, 0, 841;
%e 0, 5040, 0, 0, 15960, 0, 0, 5082, 0, 0, 5251;
%e 40320, 0, 0, 20160, 0, 0, 122640, 0, 0, 134456, 0, 0, 20497;
%t Table[CoefficientList[Expand[t^Floor[n/2]*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
%o (Sage)
%o f(x, t) = exp(t*x)/(1 - x^2/t - t^3*x^3)
%o def A158785(n, k): return ( factorial(n)*t^(n//2)*( f(x, t) ).series(x, 20).list()[n] ).series(t, 2*n+1).list()[k]
%o flatten([[A158785(n, k) for k in (0..n+(n//2))] for n in (0..10)]) # _G. C. Greubel_, Dec 05 2021
%Y Cf. A005212, A005359, A158706, A158757, A330044.
%K nonn,tabl
%O 0,4
%A _Roger L. Bagula_, Mar 26 2009
%E Edited by _G. C. Greubel_, Dec 05 2021