login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349916
Sum of A113415 and its Dirichlet inverse, where A113415 is the arithmetic mean between the number and sum of the odd divisors of n.
5
2, 0, 0, 1, 0, 6, 0, 1, 9, 8, 0, 3, 0, 10, 24, 1, 0, 7, 0, 4, 30, 14, 0, 3, 16, 16, 21, 5, 0, 4, 0, 1, 42, 20, 40, 8, 0, 22, 48, 4, 0, 6, 0, 7, 40, 26, 0, 3, 25, 18, 60, 8, 0, 23, 56, 5, 66, 32, 0, 14, 0, 34, 53, 1, 64, 10, 0, 10, 78, 12, 0, 8, 0, 40, 70, 11, 70, 12, 0, 4, 61, 44, 0, 18, 80, 46, 96, 7, 0, 44, 80
OFFSET
1,1
LINKS
FORMULA
a(n) = A113415(n) + A349915(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A113415(d) * A349915(n/d).
For all n >= 1, a(4*n) = A113415(n).
MATHEMATICA
s[n_] := DivisorSum[n, (# + 1) * Mod[#, 2] &] / 2; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
PROG
(PARI)
A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
memoA349915 = Map();
A349915(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349915, n, &v), v, v = -sumdiv(n, d, if(d<n, A113415(n/d)*A349915(d), 0)); mapput(memoA349915, n, v); (v)));
A349916(n) = (A113415(n)+A349915(n));
CROSSREFS
Cf. A113415 (also a quadrisection of this sequence), A349915.
Cf. also A349913, A349914.
Sequence in context: A335156 A158785 A346243 * A349342 A365712 A349914
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 07 2021
STATUS
approved