login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of A113415 and its Dirichlet inverse, where A113415 is the arithmetic mean between the number and sum of the odd divisors of n.
5

%I #16 Dec 10 2021 22:55:17

%S 2,0,0,1,0,6,0,1,9,8,0,3,0,10,24,1,0,7,0,4,30,14,0,3,16,16,21,5,0,4,0,

%T 1,42,20,40,8,0,22,48,4,0,6,0,7,40,26,0,3,25,18,60,8,0,23,56,5,66,32,

%U 0,14,0,34,53,1,64,10,0,10,78,12,0,8,0,40,70,11,70,12,0,4,61,44,0,18,80,46,96,7,0,44,80

%N Sum of A113415 and its Dirichlet inverse, where A113415 is the arithmetic mean between the number and sum of the odd divisors of n.

%H Antti Karttunen, <a href="/A349916/b349916.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = A113415(n) + A349915(n).

%F a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A113415(d) * A349915(n/d).

%F For all n >= 1, a(4*n) = A113415(n).

%t s[n_] := DivisorSum[n, (# + 1) * Mod[#, 2] &] / 2; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* _Amiram Eldar_, Dec 08 2021 *)

%o (PARI)

%o A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));

%o memoA349915 = Map();

%o A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(d<n,A113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v)));

%o A349916(n) = (A113415(n)+A349915(n));

%Y Cf. A113415 (also a quadrisection of this sequence), A349915.

%Y Cf. also A349913, A349914.

%K nonn

%O 1,1

%A _Antti Karttunen_, Dec 07 2021