login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349913
Sum of A001227 (the number of odd divisors function) and its Dirichlet inverse.
3
2, 0, 0, 1, 0, 4, 0, 1, 4, 4, 0, 2, 0, 4, 8, 1, 0, 2, 0, 2, 8, 4, 0, 2, 4, 4, 4, 2, 0, 0, 0, 1, 8, 4, 8, 3, 0, 4, 8, 2, 0, 0, 0, 2, 4, 4, 0, 2, 4, 2, 8, 2, 0, 4, 8, 2, 8, 4, 0, 4, 0, 4, 4, 1, 8, 0, 0, 2, 8, 0, 0, 3, 0, 4, 4, 2, 8, 0, 0, 2, 5, 4, 0, 4, 8, 4, 8, 2, 0, 8, 8, 2, 8, 4, 8, 2, 0, 2, 4, 3, 0, 0, 0, 2, 0
OFFSET
1,1
LINKS
FORMULA
a(n) = A001227(n) + A327276(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A001227(d) * A327276(n/d).
a(4*n) = A001227(n).
MATHEMATICA
f1[p_, e_] := If[p==2, 1, e+1]; f2[p_, e_] := Which[e == 1, -1 - Boole[p > 2], e == 2, Boole[p > 2], e > 2, 0]; a[1] = 2; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
PROG
(PARI)
A001227(n) = numdiv(n>>valuation(n, 2));
A327276(n) = sumdiv(n, d, if(d%2, moebius(d)*moebius(n/d))); \\ From A327276
A349913(n) = (A001227(n)+A327276(n));
CROSSREFS
Cf. A001227 (also a quadrisection of this sequence), A327276.
Cf. also A349914, A349916.
Sequence in context: A054876 A109502 A323887 * A346236 A323365 A349135
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 08 2021
STATUS
approved