login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A349913
Sum of A001227 (the number of odd divisors function) and its Dirichlet inverse.
3
2, 0, 0, 1, 0, 4, 0, 1, 4, 4, 0, 2, 0, 4, 8, 1, 0, 2, 0, 2, 8, 4, 0, 2, 4, 4, 4, 2, 0, 0, 0, 1, 8, 4, 8, 3, 0, 4, 8, 2, 0, 0, 0, 2, 4, 4, 0, 2, 4, 2, 8, 2, 0, 4, 8, 2, 8, 4, 0, 4, 0, 4, 4, 1, 8, 0, 0, 2, 8, 0, 0, 3, 0, 4, 4, 2, 8, 0, 0, 2, 5, 4, 0, 4, 8, 4, 8, 2, 0, 8, 8, 2, 8, 4, 8, 2, 0, 2, 4, 3, 0, 0, 0, 2, 0
OFFSET
1,1
LINKS
FORMULA
a(n) = A001227(n) + A327276(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A001227(d) * A327276(n/d).
a(4*n) = A001227(n).
MATHEMATICA
f1[p_, e_] := If[p==2, 1, e+1]; f2[p_, e_] := Which[e == 1, -1 - Boole[p > 2], e == 2, Boole[p > 2], e > 2, 0]; a[1] = 2; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
PROG
(PARI)
A001227(n) = numdiv(n>>valuation(n, 2));
A327276(n) = sumdiv(n, d, if(d%2, moebius(d)*moebius(n/d))); \\ From A327276
A349913(n) = (A001227(n)+A327276(n));
CROSSREFS
Cf. A001227 (also a quadrisection of this sequence), A327276.
Cf. also A349914, A349916.
Sequence in context: A054876 A109502 A323887 * A346236 A323365 A349135
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 08 2021
STATUS
approved