login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349135
Sum of Kimberling's paraphrases (A003602) and its Dirichlet inverse.
10
2, 0, 0, 1, 0, 4, 0, 1, 4, 6, 0, 2, 0, 8, 12, 1, 0, 6, 0, 3, 16, 12, 0, 2, 9, 14, 12, 4, 0, 4, 0, 1, 24, 18, 24, 5, 0, 20, 28, 3, 0, 6, 0, 6, 26, 24, 0, 2, 16, 17, 36, 7, 0, 16, 36, 4, 40, 30, 0, 8, 0, 32, 36, 1, 42, 10, 0, 9, 48, 12, 0, 5, 0, 38, 46, 10, 48, 12, 0, 3, 37, 42, 0, 11, 54, 44, 60, 6, 0, 20, 56, 12
OFFSET
1,1
COMMENTS
Question: Are all terms nonnegative?
The answer to the above question is no, because A323894 (which is a prime-shifted version of this sequence) also contains negative values. For example, for n=72747675, 88062975, 130945815, 111035925 we get here a(n) = -14126242, -17546656, -14460312, -22677277. The indices are obtained by prime-shifting with A003961 the four indices mentioned in the Apr 20 2022 comment of A323894. - Antti Karttunen, Nov 30 2024
FORMULA
a(n) = A003602(n) + A349134(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A003602(d) * A349134(n/d).
For all n >= 1, a(4*n) = A003602(n). - Antti Karttunen, Dec 07 2021
MATHEMATICA
k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; d[1] = 1; d[n_] := d[n] = -DivisorSum[n, d[#]*k[n/#] &, # < n &]; a[n_] := k[n] + d[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003602(n) = (1+(n>>valuation(n, 2)))/2;
v349134 = DirInverseCorrect(vector(up_to, n, A003602(n)));
A349134(n) = v349134[n];
A349135(n) = (A003602(n)+A349134(n));
(PARI) A349135(n) = if(1==n, 2, -sumdiv(n, d, if(1==d||n==d, 0, A003602(d)*A349134(n/d)))); \\ (Demonstrates the "cut convolution" formula) - Antti Karttunen, Nov 13 2021
(PARI)
A003602(n) = (1+(n>>valuation(n, 2)))/2;
memoA349134 = Map();
A349134(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349134, n, &v), v, v = -sumdiv(n, d, if(d<n, A003602(n/d)*A349134(d), 0)); mapput(memoA349134, n, v); (v)));
A349135(n) = (A003602(n)+A349134(n)); \\ Antti Karttunen, Nov 30 2024
CROSSREFS
Cf. A003602 (also quadrisection of this sequence), A349134, A323894 [= a(A003961(n))].
Cf. also A323882, A349126.
Sequence in context: A349913 A346236 A323365 * A353336 A349126 A340188
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 13 2021
STATUS
approved