login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349134
Dirichlet inverse of Kimberling's paraphrases, A003602.
19
1, -1, -2, 0, -3, 2, -4, 0, -1, 3, -6, 0, -7, 4, 4, 0, -9, 1, -10, 0, 5, 6, -12, 0, -4, 7, -2, 0, -15, -4, -16, 0, 7, 9, 6, 0, -19, 10, 8, 0, -21, -5, -22, 0, 3, 12, -24, 0, -9, 4, 10, 0, -27, 2, 8, 0, 11, 15, -30, 0, -31, 16, 4, 0, 9, -7, -34, 0, 13, -6, -36, 0, -37, 19, 8, 0, 9, -8, -40, 0, -4, 21, -42, 0, 11, 22
OFFSET
1,3
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A003602(n/d) * a(d).
a(n) = A349135(n) - A003602(n).
MATHEMATICA
k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#]*k[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003602(n) = (1+(n>>valuation(n, 2)))/2;
v349134 = DirInverseCorrect(vector(up_to, n, A003602(n)));
A349134(n) = v349134[n];
CROSSREFS
Cf. also A323881, A349125.
Sequence in context: A077961 A077962 A353484 * A338101 A338490 A213607
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 13 2021
STATUS
approved