login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077961
Expansion of 1 / (1 + x^2 - x^3) in powers of x.
13
1, 0, -1, 1, 1, -2, 0, 3, -2, -3, 5, 1, -8, 4, 9, -12, -5, 21, -7, -26, 28, 19, -54, 9, 73, -63, -64, 136, 1, -200, 135, 201, -335, -66, 536, -269, -602, 805, 333, -1407, 472, 1740, -1879, -1268, 3619, -611, -4887, 4230, 4276, -9117, -46, 13393, -9071, -13439, 22464, 4368, -35903, 18096, 40271, -53999
OFFSET
0,6
LINKS
N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
Michael D. Hirschhorn, Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See L_n.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n-k)*binomial(k, n-2*k). - Paul Barry, Jun 24 2005
From Alois P. Heinz, Jun 20 2008: (Start)
a(n) = term (1,1) in matrix [0,1,0; -1,0,1; 1,0,0]^n.
a(n) = A000930 (-3-n). (End)
a(-n) = A078012(n). - Michael Somos, May 03 2011
From Michael Somos, Jan 08 2014: (Start)
a(-n) = A135851(n+2).
a(n)^2 - a(n-1)*a(n+1) = A135851(n+5). (End)
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x^2*(4*k+1 - x )/( x^2*(4*k+3 - x ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
EXAMPLE
G.f. = 1 - x^2 + x^3 + x^4 - 2*x^5 + 3*x^7 - 2*x^8 - 3*x^9 + 5*x^10 + x^11 + ...
MAPLE
a:= n-> (<<0|1|0>, <-1|0|1>, <1|0|0>>^n)[1, 1]:
seq(a(n), n=0..50); # Alois P. Heinz, Jun 20 2008
MATHEMATICA
a[ n_] := If[ n >= 0, SeriesCoefficient[ 1 / (1 + x^2 - x^3), {x, 0, n}], SeriesCoefficient[ x^3 / (1 - x - x^3), {x, 0, -n}]] (* Michael Somos, Jan 08 2014 *)
PROG
(PARI) {a(n) = if( n<0, polcoeff( x^3 / (1 - x - x^3) + x * O(x^-n), -n), polcoeff( 1 / (1 + x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Jan 08 2014 */
(Magma) I:=[1, 0, -1]; [n le 3 select I[n] else -Self(n-2) +Self(n-3): n in [1..70]]; // G. C. Greubel, Mar 28 2024
(SageMath) [sum((-1)^(n+k)*binomial(k, n-2*k) for k in range(1+n//2)) for n in range(71)] # G. C. Greubel, Mar 28 2024
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved