The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077959 Expansion of 1/(1+2*x^3). 2
 1, 0, 0, -2, 0, 0, 4, 0, 0, -8, 0, 0, 16, 0, 0, -32, 0, 0, 64, 0, 0, -128, 0, 0, 256, 0, 0, -512, 0, 0, 1024, 0, 0, -2048, 0, 0, 4096, 0, 0, -8192, 0, 0, 16384, 0, 0, -32768, 0, 0, 65536, 0, 0, -131072, 0, 0, 262144, 0, 0, -524288, 0, 0, 1048576, 0, 0, -2097152, 0, 0, 4194304, 0, 0, -8388608, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1002 Index entries for linear recurrences with constant coefficients, signature (0, 0, -2). FORMULA a(0)=1, a(1)=0, a(2)=0, a(n) = -2*a(n-3). - Harvey P. Dale, Dec 19 2012 a(n) = (-1)^n * A077958(n). - R. J. Mathar, Mar 04 2018 MATHEMATICA CoefficientList[Series[1/(1+2x^3), {x, 0, 80}], x] (* or *) LinearRecurrence[ {0, 0, -2}, {1, 0, 0}, 80] (* Harvey P. Dale, Dec 19 2012 *) PROG (PARI) Vec(1/(1+2*x^3)+O(x^80)) \\ Charles R Greathouse IV, Sep 27 2012 (MAGMA) R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/(1+2*x^3) )); // G. C. Greubel, Jun 23 2019 (Sage) (1/(1+2*x^3)).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, Jun 23 2019 CROSSREFS Cf. A077958. Sequence in context: A136337 A028601 A077958 * A022002 A084658 A326404 Adjacent sequences:  A077956 A077957 A077958 * A077960 A077961 A077962 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 23:30 EDT 2021. Contains 343780 sequences. (Running on oeis4.)