The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077957 Powers of 2 alternating with zeros. 45
 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, 32, 0, 64, 0, 128, 0, 256, 0, 512, 0, 1024, 0, 2048, 0, 4096, 0, 8192, 0, 16384, 0, 32768, 0, 65536, 0, 131072, 0, 262144, 0, 524288, 0, 1048576, 0, 2097152, 0, 4194304, 0, 8388608, 0, 16777216, 0, 33554432, 0, 67108864, 0, 134217728, 0, 268435456 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Normally sequences like this are not included, since with the alternating 0's deleted it is already in the database. Inverse binomial transform of A001333. - Paul Barry, Feb 25 2003 "Sloping binary representation" of powers of 2 (A000079), slope=-1 (see A037095 and A102370). - Philippe Deléham, Jan 04 2008 0,1,0,2,0,4,0,8,0,16,...is the inverse binomial transform of A000129 (Pell numbers). - Philippe Deléham, Oct 28 2008 Number of maximal self-avoiding walks from the NW to SW corners of a 3 X n grid. Row sums of the triangle in A204293. - Reinhard Zumkeller, Jan 14 2012 Pisano period lengths: 1, 1, 4, 1, 8, 4, 6, 1, 12, 8, 20, 4, 24, 6, 8, 1, 16, 12, 36, 8, ... . - R. J. Mathar, Aug 10 2012 This sequence occurs in the length L(n) = sqrt(2)^n of Lévy's C-curve at the n-th iteration step. Therefore, L(n) is the Q(sqrt(2)) integer a(n) + a(n-1)*sqrt(2), with a(-1) = 0. For a variant of this C-curve see A251732 and A251733. - Wolfdieter Lang, Dec 08 2014 a(n) counts walks (closed) on the graph G(1-vertex,2-loop,2-loop). Equivalently the middle entry (2,2) of A^n where the adjacency matrix of digraph is A=(0,1,0;1,0,1;0,1,0). - David Neil McGrath, Dec 19 2014 a(n-2) is the number of compositions of n into even parts. For example, there are 4 compositions of 6 into even parts: (6), (222), (42), and (24). - David Neil McGrath, Dec 19 2014 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,2). FORMULA G.f.: 1/(1-2*x^2). E.g.f.: cosh(x*sqrt(2)). a(n) = (1 - n mod 2) * 2^floor(n/2). a(n) = sqrt(2)^n*(1+(-1)^n)/2. - Paul Barry, May 13 2003 a(n) = 2*a(n-2) with a(0)=1, a(1)=0. - Jim Singh, Jul 12 2018 MAPLE seq(op([2^n, 0]), n=0..100); # Robert Israel, Dec 23 2014 MATHEMATICA a077957[n_] := Riffle[Table[2^i, {i, 0, n - 1}], Table[0, {n}]]; a077957 (* Michael De Vlieger, Dec 22 2014 *) CoefficientList[Series[1/(1 - 2*x^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 12 2017 *) LinearRecurrence[{0, 2}, {1, 0}, 54] (* Robert G. Wilson v, Jul 23 2018 *) PROG (PARI) a(n)=if(n<0||n%2, 0, 2^(n/2)) (Haskell) a077957 = sum . a204293_row  -- Reinhard Zumkeller, Jan 14 2012 (Sage) def A077957():     x, y = -1, 1     while True:         yield -x         x, y = x + y, x - y a = A077957(); [next(a) for i in range(40)]  # Peter Luschny, Jul 11 2013 (MAGMA) &cat [[2^n, 0]: n in [0..20]]; // Vincenzo Librandi, Apr 03 2018 (GAP) Flat(List([0..30], n->[2^n, 0])); # Muniru A Asiru, Aug 05 2018 CROSSREFS Cf. A000079, A077966. Column k=3 of A219946. - Alois P. Heinz, Dec 01 2012 Sequence in context: A176296 A194795 A131575 * A077966 A275670 A021102 Adjacent sequences:  A077954 A077955 A077956 * A077958 A077959 A077960 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 05:13 EDT 2021. Contains 343965 sequences. (Running on oeis4.)