login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204293 Pascal's triangle interspersed with rows of zeros, and the rows of Pascal's triangle are interspersed with zeros. 6
1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 0, 15, 0, 20 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

Auxiliary array for computing Losanitsch's triangle A034851;

T(n, k) + T(n, k + 2) = T(n + 2, k + 2) for k < n - 1.

LINKS

Reinhard Zumkeller, Rows n=0..100 of triangle, flattened

N. J. A. Sloane, Classic Sequences: Losanitsch's Triangle

Eric Weisstein's World of Mathematics, Losanitsch's Triangle

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(n, k) = (1 - n mod 2) * (1 - k mod 2) * binomial(floor(n/2),floor(k/2)).

MATHEMATICA

t[n_?EvenQ, k_?EvenQ] := Binomial[n/2, k/2]; t[_, _] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-Fran├žois Alcover, Feb 07 2012 *)

PROG

(Haskell)

a204293 n k = a204293_tabl !! n !! k

a204293_row n = a204293_tabl !! n

a204293_tabl = [1] : [0, 0] : f [1] [0, 0] where

   f xs ys = xs' : f ys xs' where

     xs' = zipWith (+) ([0, 0] ++ xs) (xs ++ [0, 0])

CROSSREFS

Cf. A077957 (row sums), A126869 (central terms); A108044, A007318.

Sequence in context: A064530 A037047 A118917 * A206479 A219484 A060396

Adjacent sequences:  A204290 A204291 A204292 * A204294 A204295 A204296

KEYWORD

nonn,tabl

AUTHOR

Reinhard Zumkeller, Jan 14 2012

EXTENSIONS

Formula for T(n,k) corrected by Peter Bala, Jul 06 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 17:08 EST 2018. Contains 299325 sequences. (Running on oeis4.)