login
A206479
Number of terms common to the binary expansions of m and n; a matrix by antidiagonals.
3
1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 2, 1, 2, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,13
EXAMPLE
Northwest corner (the antidiagonals can be read either
southwest or northeast, since the matrix is symmetric):
1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1
1 1 2 0 1 1 2 0 1 1
0 0 0 1 1 1 1 0 0 0
1 0 1 1 2 1 2 0 1 0
0 1 1 1 1 2 2 0 0 1
1 1 2 1 2 2 3 0 1 1
...
11 = 1 + 1*2 + 1*8 and 29 = 1 + 1*4 + 1*8 + 1*16,
so that T(11,29)=2.
MATHEMATICA
d[n_] := IntegerDigits[n, 2];
t[n_] := Reverse[Array[d, 120][[n]]]
s[n_] := Position[t[n], 1]
t[m_, n_] := Length[Intersection[s[m], s[n]]]
TableForm[Table[t[m, n], {m, 1, 14},
{n, 1, 14}]] (* A206479 as a matrix *)
Flatten[Table[t[i, n + 1 - i], {n, 1, 14},
{i, 1, n}]] (* A206479 as a sequence *)
u = Table[t[n - 1, m], {n, 3, 16}, {m, 1, n - 2}];
TableForm[u] (* A206566 as a triangle *)
Flatten[u] (* A206566 as a sequence *)
v[n_] := Table[t[k, n + 1], {k, 1, n}]
Table[Count[v[n], 0], {n, 1, 100}] (* A115478 *)
CROSSREFS
Sequence in context: A118917 A325045 A204293 * A219484 A060396 A353353
KEYWORD
nonn,tabl,base
AUTHOR
Clark Kimberling, Feb 09 2012
STATUS
approved