login
A206481
a(n) + a(n+2) = n^3.
2
0, 1, 1, 7, 26, 57, 99, 159, 244, 353, 485, 647, 846, 1081, 1351, 1663, 2024, 2433, 2889, 3399, 3970, 4601, 5291, 6047, 6876, 7777, 8749, 9799, 10934, 12153, 13455, 14847, 16336, 17921, 19601, 21383, 23274, 25273, 27379, 29599, 31940, 34401, 36981, 39687
OFFSET
1,4
COMMENTS
If the offset were 0, the formula would be: a(0)=0, a(1)=1, for n>=2: a(n) = (n-1)^3 - a(n-2).
FORMULA
a(n) = (1/2)*((n-3)*n^2-4*cos((Pi*n)/2)+2). - _Harvey P. Dale_, Sep 14 2012
G.f.: x^2*(1 - 3*x + 10*x^2 - 3*x^3 + x^4)/((1-x)^4*(1+x^2)). - _Paul D. Hanna_, Sep 14 2012
MATHEMATICA
LinearRecurrence[{4, -7, 8, -7, 4, -1}, {0, 1, 1, 7, 26, 57}, 60]
RecurrenceTable[{a[1]==0, a[2]==1, a[n]==(n-2)^3-a[n-2]}, a, {n, 50}] (* _Harvey P. Dale_, Sep 14 2012 *)
PROG
(Python)
prpr = 0
prev = 1
for n in range(1, 77):
print(prpr, end=', ')
curr = n*n*n - prpr # a(n+1)
prpr = prev
prev = curr
CROSSREFS
Cf. A144129 (bisection).
Sequence in context: A063159 A274268 A059376 * A049453 A231888 A211645
KEYWORD
nonn,easy
AUTHOR
STATUS
approved