login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059376 Jordan function J_3(n). 33
1, 7, 26, 56, 124, 182, 342, 448, 702, 868, 1330, 1456, 2196, 2394, 3224, 3584, 4912, 4914, 6858, 6944, 8892, 9310, 12166, 11648, 15500, 15372, 18954, 19152, 24388, 22568, 29790, 28672, 34580, 34384, 42408, 39312, 50652, 48006, 57096 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Wikipedia, Jordan's totient function.

FORMULA

Multiplicative with a(p^e) = p^(3e) - p^(3e-3). - Vladeta Jovovic, Jul 26 2001

a(n) = Sum_{d|n} d^3*mu(n/d). - Benoit Cloitre, Apr 05 2002

Dirichlet generating function: zeta(s-3)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005

A063453(n) divides a(n). - R. J. Mathar, Mar 30 2011

a(n) = Sum_{k=1..n} gcd(k,n)^3 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013

a(n) = n^3*Product_{distinct primes p dividing n} (1-1/p^3). - Tom Edgar, Jan 09 2015

G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 4*x + x^2)/(1 - x)^4. - Ilya Gutkovskiy, Apr 25 2017

Sum_{d|n} a(d) = n^3. - Werner Schulte, Jan 12 2018

Sum_{k=1..n} a(k) ~ 45*n^4 / (2*Pi^4). - Vaclav Kotesovec, Feb 07 2019

From Amiram Eldar, Oct 12 2020: (Start)

lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^3 = 1/zeta(4) (A215267).

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^3/(p^3-1)^2) = 1.2253556451... (End)

MAPLE

J := proc(n, k) local i, p, t1, t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 3)

A059376 := proc(n)

    add(d^3*numtheory[mobius](n/d), d=numtheory[divisors](n)) ;

end proc: # R. J. Mathar, Nov 03 2015

MATHEMATICA

JordanJ[n_, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 3]; Array[f, 39]

f[p_, e_] := p^(3*e) - p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)

PROG

(PARI) for(n=1, 120, print1(sumdiv(n, d, d^3*moebius(n/d)), ", "))

(PARI) for (n = 1, 1000, write("b059376.txt", n, " ", sumdiv(n, d, d^3*moebius(n/d))); ) \\ Harry J. Smith, Jun 26 2009

(PARI) seq(n) = dirmul(vector(n, k, k^3), vector(n, k, moebius(k)));

seq(39)  \\ Gheorghe Coserea, May 11 2016

CROSSREFS

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059377 (J_4), A059378 (J_5).

Cf. A013662, A215267.

Sequence in context: A063578 A063159 A274268 * A206481 A049453 A231888

Adjacent sequences:  A059373 A059374 A059375 * A059377 A059378 A059379

KEYWORD

nonn,mult,easy

AUTHOR

N. J. A. Sloane, Jan 28 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 10:12 EST 2020. Contains 338679 sequences. (Running on oeis4.)