OFFSET
0,1
COMMENTS
Decimal expansion of 1/zeta(4), the inverse of A013662. This is the probability that 4 randomly chosen natural numbers are relatively prime.
Also the asymptotic probability that a random integer is 4-free. See equivalent comments in A088453, A059956. - Balarka Sen, Aug 08 2012
The probability that the greatest common divisor of two numbers selected at random is squarefree (Christopher, 1956). - Amiram Eldar, May 23 2020
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 231.
LINKS
Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
John Christopher, The Asymptotic Density of Some k-Dimensional Sets, The American Mathematical Monthly, Vol. 63, No. 6 (1956), pp. 399-401.
Math Forums, Probability that a number is composite, Aug 2012.
FORMULA
Reciprocal of A013662.
1/zeta(4) = 90/Pi^4 = Product_{k>=1} (1 - 1/prime(k)^4) = Sum_{n>=1} mu(n)/n^4, a Dirichlet series for the Möbius function mu. See the examples in Apostol, here for s = 4. - Wolfdieter Lang, Aug 07 2019
EXAMPLE
0.92393840292159016702375049404068247276450216682744364463512319...
MATHEMATICA
RealDigits[90/Pi^4, 10, 100][[1]] (* Bruno Berselli, Aug 07 2012 *)
PROG
(PARI) 90/Pi^4 \\ Charles R Greathouse IV, Aug 07 2012
(Maxima) 90/%pi^4; /* Balarka Sen, Aug 08 2012 */
CROSSREFS
KEYWORD
AUTHOR
Jimmy Zotos, Aug 07 2012
STATUS
approved