login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144981
Decimal expansion of cos(Pi/8) = cos(22.5 degrees).
12
9, 2, 3, 8, 7, 9, 5, 3, 2, 5, 1, 1, 2, 8, 6, 7, 5, 6, 1, 2, 8, 1, 8, 3, 1, 8, 9, 3, 9, 6, 7, 8, 8, 2, 8, 6, 8, 2, 2, 4, 1, 6, 6, 2, 5, 8, 6, 3, 6, 4, 2, 4, 8, 6, 1, 1, 5, 0, 9, 7, 7, 3, 1, 2, 8, 0, 5, 3, 5, 0, 0, 7, 5, 0, 1, 1, 0, 2, 3, 5, 8, 7, 1, 4, 8, 3, 9, 9, 3, 4, 8, 5, 0, 3, 4, 4, 5, 9, 6, 0, 9, 7, 9, 6, 3
OFFSET
0,1
COMMENTS
Also the real part of i^(1/4). - Stanislav Sykora, Apr 25 2012
Width of a regular octagon of unit diameter. See Bingane and Audet. - Michel Marcus, Oct 04 2021
Minimal polynomal 8x^4 - 8x^2 + 1. - Charles R Greathouse IV, Oct 30 2023
LINKS
Christian Bingane and Charles Audet, The equilateral small octagon of maximal width, arXiv:2110.00036 [math.MG], 2021.
FORMULA
Equals sqrt(2 + sqrt(2))/2 = sqrt(3.41421...)/2 = 1.8477759.../2.
Equals Hypergeometric2F1([11/16, 5/16], [1/2], 3/4) / 2. - R. J. Mathar, Oct 27 2008
EXAMPLE
Equals 0.923879532511286756128183189396788286822416625863642486115097...
MAPLE
evalf(sqrt(2+sqrt(2))/2) ;
MATHEMATICA
RealDigits[ Sqrt[2 + Sqrt[2]]/2, 10, 111][[1]] (* Or *) RealDigits[ Cos[Pi/8], 10, 111][[1]] (* Robert G. Wilson v *)
PROG
(PARI) cos(Pi/8) \\ Michel Marcus, Dec 15 2015
(SageMath) numerical_approx(sqrt(2+sqrt(2))/2, digits=120) # G. C. Greubel, Sep 04 2022
CROSSREFS
Cf. A019863: cos(Pi/5); A010527: cos(Pi/6); A073052: cos(Pi/7); A019879: cos(Pi/9).
Sequence in context: A257959 A137197 A340826 * A215267 A248322 A248321
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Sep 28 2008
STATUS
approved