login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215268
Concatenation of the decimal digits of n^2-1 and n^2.
1
-10, 1, 34, 89, 1516, 2425, 3536, 4849, 6364, 8081, 99100, 120121, 143144, 168169, 195196, 224225, 255256, 288289, 323324, 360361, 399400, 440441, 483484, 528529, 575576, 624625, 675676, 728729, 783784, 840841, 899900, 960961, 10231024, 10881089
OFFSET
0,1
COMMENTS
a(n) mod 9 has a period of length 9: repeat 8, 1, 7, 8, 4, 4, 8, 7, 1 = b(n). See A153349(n)=1,7,4,4,7,1,... .
a(n+1) - a(n) = 11, 33, 55, 1427, 909, 1111, 1313, 1515, 1717, 91019, 21021, 23023, 25025, ...
= c(n) = 11, 3*11, 5*11, prime, 9*101, 11*101, 13*101, 15*101, 17*101, prime, 21*1001, 23*1001, ... , 61*1001, 9270063 = 3^2*11*93637, 65*10001, ... .
c(n) mod 10 = periodic of period 5: repeat 1, 3, 5, 7, 9 = A141518(n).
LINKS
FORMULA
a(n) = A005563(n-1)//A000290(n) where // denotes concatenation.
a(n) = n^2+(n^2-1)*10^floor(log_10((2*n^2+1-(-1)^(2^n))/2)+1). - Luce ETIENNE, Sep 19 2014
MAPLE
read("transforms") :
A215268 := proc(n)
if n = 0 then
-10;
else
digcat2(n^2-1, n^2) ;
end if;
end proc: # R. J. Mathar, Aug 07 2012
# second Maple program:
a:= n-> (s-> parse(cat(s-1, s)))(n^2):
seq(a(n), n=0..44); # Alois P. Heinz, Jul 05 2018
MATHEMATICA
ccd[n_]:=FromDigits[Join[IntegerDigits[n^2-1], IntegerDigits[n^2]]]; Join[{-10}, Array[ccd, 40]] (* Harvey P. Dale, Mar 02 2013 *)
PROG
(PARI) a(n) = eval(Str(n^2-1, n^2)); \\ Michel Marcus, Jul 04 2018
(Magma) [-10] cat [Seqint(Intseq(n^2) cat Intseq(n^2-1)): n in [1..50]]; // Vincenzo Librandi, Jul 04 2018
CROSSREFS
Sequence in context: A361949 A070246 A085044 * A059022 A193634 A115097
KEYWORD
sign,base,less,easy
AUTHOR
Paul Curtz, Aug 07 2012
STATUS
approved