login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Concatenation of the decimal digits of n^2-1 and n^2.
1

%I #35 Sep 08 2022 08:46:03

%S -10,1,34,89,1516,2425,3536,4849,6364,8081,99100,120121,143144,168169,

%T 195196,224225,255256,288289,323324,360361,399400,440441,483484,

%U 528529,575576,624625,675676,728729,783784,840841,899900,960961,10231024,10881089

%N Concatenation of the decimal digits of n^2-1 and n^2.

%C a(n) mod 9 has a period of length 9: repeat 8, 1, 7, 8, 4, 4, 8, 7, 1 = b(n). See A153349(n)=1,7,4,4,7,1,... .

%C a(n+1) - a(n) = 11, 33, 55, 1427, 909, 1111, 1313, 1515, 1717, 91019, 21021, 23023, 25025, ...

%C = c(n) = 11, 3*11, 5*11, prime, 9*101, 11*101, 13*101, 15*101, 17*101, prime, 21*1001, 23*1001, ... , 61*1001, 9270063 = 3^2*11*93637, 65*10001, ... .

%C c(n) mod 10 = periodic of period 5: repeat 1, 3, 5, 7, 9 = A141518(n).

%H G. C. Greubel, <a href="/A215268/b215268.txt">Table of n, a(n) for n = 0..5000</a>

%F a(n) = A005563(n-1)//A000290(n) where // denotes concatenation.

%F a(n) = n^2+(n^2-1)*10^floor(log_10((2*n^2+1-(-1)^(2^n))/2)+1). - _Luce ETIENNE_, Sep 19 2014

%p read("transforms") :

%p A215268 := proc(n)

%p if n = 0 then

%p -10;

%p else

%p digcat2(n^2-1,n^2) ;

%p end if;

%p end proc: # _R. J. Mathar_, Aug 07 2012

%p # second Maple program:

%p a:= n-> (s-> parse(cat(s-1, s)))(n^2):

%p seq(a(n), n=0..44); # _Alois P. Heinz_, Jul 05 2018

%t ccd[n_]:=FromDigits[Join[IntegerDigits[n^2-1],IntegerDigits[n^2]]]; Join[{-10}, Array[ccd,40]] (* _Harvey P. Dale_, Mar 02 2013 *)

%o (PARI) a(n) = eval(Str(n^2-1, n^2)); \\ _Michel Marcus_, Jul 04 2018

%o (Magma) [-10] cat [Seqint(Intseq(n^2) cat Intseq(n^2-1)): n in [1..50]]; // _Vincenzo Librandi_, Jul 04 2018

%Y Cf. A135276, A000533.

%K sign,base,less,easy

%O 0,1

%A _Paul Curtz_, Aug 07 2012