login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215265
(n-1)^(n+1) - n^n.
2
-2, -1, -3, -11, -13, 971, 31469, 856073, 23576391, 686321335, 21381059609, 714688329389, 25606611695675, 981043357956611, 40073886188532741, 1740059447428511761, 80079381261983807759, 3895126220983308449519, 199726027609854787271729
OFFSET
0,1
COMMENTS
0^0 is interpreted as 1.
FORMULA
For n>0, a(n) = A046065(n-1) - A101334(n).
E.g.f.: x/W(-x) - (1+x)/(1+W(-x)) - x/(1+W(-x))^2 + x/(1+W(-x))^3, where W is the Lambert W function. - Robert Israel, Mar 29 2017
EXAMPLE
a(3) = 2^4 - 3^3 = 16-27 = -11.
MAPLE
A215265 := proc(n)
(n-1)^(n+1)-n^n ;
end proc: # R. J. Mathar, Aug 07 2012
MATHEMATICA
Join[{-2}, Table[(n-1)^(n+1)-n^n, {n, 20}]] (* Harvey P. Dale, May 21 2023 *)
PROG
(Python)
for n in range(33):
print (n-1)**(n+1) - n**n,
CROSSREFS
Cf. A064232 is essentially equal to (n-1)^(n+1) mod n^n.
Sequence in context: A276116 A306993 A119928 * A036448 A369242 A187111
KEYWORD
sign
AUTHOR
Alex Ratushnyak, Aug 07 2012
STATUS
approved