login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101334
a(n) = n^n - (n+1)^(n-1).
5
0, 0, 1, 11, 131, 1829, 29849, 561399, 11994247, 287420489, 7642052309, 223394306387, 7123940054219, 246181194216957, 9165811757198641, 365836296342931439, 15584321022199735823, 705800730789742512401, 33866021217511735389485, 1716275655660313589123979
OFFSET
0,4
COMMENTS
b(n) = n^n mod (n+1)^(n-1) begins: 0, 0, 1, 11, 6, 533, 13042, 37111, 2428309, ... - Alex Ratushnyak, Aug 06 2012
a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} with at least one cycle of length >= 2. - Geoffrey Critzer, Jan 11 2013
Number of defective parking functions of length n and at least one defect. - Alois P. Heinz, Aug 18 2017
LINKS
Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, and Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008.
Luca Ferrari and Francesco Verciani, On the enumeration of permutation-invariant and complete Naples parking functions, arXiv:2411.06876 [math.CO], 2024. See p. 11.
FORMULA
E.g.f.: 1/(1-T(x)) - exp(T(x)) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Jan 11 2013
a(n) = Sum_{k>0} A264902(n,k). - Alois P. Heinz, Nov 29 2015
a(n) = A000312(n) - A000272(n+1). - Alois P. Heinz, Aug 18 2017
EXAMPLE
a(3) = 3^3 - 4^2 = 27-16 = 11.
MATHEMATICA
ReplacePart[Table[n^n-(n+1)^(n-1), {n, 0, nn}], 0, 1] (* Geoffrey Critzer, Jan 11 2013 *)
PROG
(PARI) for(x=1, 20, print( x^x-(x+1)^(x-1) ))
(Python)
print([n**n - (n+1)**(n-1) for n in range(33)]) # Alex Ratushnyak, Aug 06 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Jorge Coveiro, Dec 24 2004
EXTENSIONS
a(0) prepended by Alex Ratushnyak, Aug 06 2012
STATUS
approved