The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101334 a(n) = n^n - (n+1)^(n-1). 5
 0, 0, 1, 11, 131, 1829, 29849, 561399, 11994247, 287420489, 7642052309, 223394306387, 7123940054219, 246181194216957, 9165811757198641, 365836296342931439, 15584321022199735823, 705800730789742512401, 33866021217511735389485, 1716275655660313589123979 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS b(n) = n^n mod (n+1)^(n-1)  begins: 0, 0, 1, 11, 6, 533, 13042, 37111, 2428309, ... a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} with at least one cycle of length >= 2. - Geoffrey Critzer, Jan 11 2013 Number of defective parking functions of length n and at least one defect. - Alois P. Heinz, Aug 18 2017 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..386 Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008 FORMULA E.g.f.: 1/(1-T(x)) - exp(T(x)) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Jan 11 2013 a(n) = Sum_{k>0} A264902(n,k). - Alois P. Heinz, Nov 29 2015 a(n) = A000312(n) - A000272(n+1). - Alois P. Heinz, Aug 18 2017 EXAMPLE a(3) = 3^3 - 4^2 = 27-16 = 11. MATHEMATICA ReplacePart[Table[n^n-(n+1)^(n-1), {n, 0, nn}], 0, 1]  (* Geoffrey Critzer, Jan 11 2013 *) PROG (PARI) for(x=1, 20, print( x^x-(x+1)^(x-1) )) (Python) for n in range(33):   print n**n - (n+1)**(n-1), CROSSREFS Cf. A000272, A000312, A046065, A264902. Sequence in context: A075509 A061113 A261689 * A222872 A068645 A097258 Adjacent sequences:  A101331 A101332 A101333 * A101335 A101336 A101337 KEYWORD nonn AUTHOR Jorge Coveiro, Dec 24 2004 EXTENSIONS a(0), Python program and b(n) in comments added by Alex Ratushnyak, Aug 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 14:03 EST 2020. Contains 332078 sequences. (Running on oeis4.)