login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264902 Number T(n,k) of defective parking functions of length n and defect k; triangle T(n,k), n>=0, 0<=k<=max(0,n-1), read by rows. 15
1, 1, 3, 1, 16, 10, 1, 125, 107, 23, 1, 1296, 1346, 436, 46, 1, 16807, 19917, 8402, 1442, 87, 1, 262144, 341986, 173860, 41070, 4320, 162, 1, 4782969, 6713975, 3924685, 1166083, 176843, 12357, 303, 1, 100000000, 148717762, 96920092, 34268902, 6768184, 710314, 34660, 574, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Rows n = 0..141, flattened

Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008

FORMULA

T(n,k) = S(n,k) - S(n,k+1) with S(n,0) = n^n, S(n,k) = Sum_{i=0..n-k} C(n,i) * k*(k+i)^(i-1) * (n-k-i)^(n-i) for k>0.

Sum_{k>0} k * T(n,k) = A036276(n-1) for n>0.

Sum_{k>0} T(n,k) = A101334(n).

EXAMPLE

T(2,0) = 3: [1,1], [1,2], [2,1].

T(2,1) = 1: [2,2].

T(3,1) = 10: [1,3,3], [2,2,2], [2,2,3], [2,3,2], [2,3,3], [3,1,3], [3,2,2], [3,2,3], [3,3,1], [3,3,2].

T(3,2) = 1: [3,3,3].

Triangle T(n,k) begins:

0 :       1;

1 :       1;

2 :       3,       1;

3 :      16,      10,       1;

4 :     125,     107,      23,       1;

5 :    1296,    1346,     436,      46,      1;

6 :   16807,   19917,    8402,    1442,     87,     1;

7 :  262144,  341986,  173860,   41070,   4320,   162,   1;

8 : 4782969, 6713975, 3924685, 1166083, 176843, 12357, 303, 1;

MAPLE

S:= (n, k)-> `if`(k=0, n^n, add(binomial(n, i)*k*

            (k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k)):

T:= (n, k)-> S(n, k)-S(n, k+1):

seq(seq(T(n, k), k=0..max(0, n-1)), n=0..10);

MATHEMATICA

S[n_, k_] := If[k==0, n^n, Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}]]; T[n_, k_] := S[n, k]-S[n, k+1]; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, Max[0, n-1]}] // Flatten (* Jean-Fran├žois Alcover, Feb 18 2017, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A000272(n+1), A140647, A291128, A291129, A291130, A291131, A291132, A291133, A291134, A291135, A291136.

Row sums give A000312.

T(2n,n) gives A264903.

Cf. A036276, A101334.

Sequence in context: A071211 A222029 A038675 * A156653 A048159 A276640

Adjacent sequences:  A264899 A264900 A264901 * A264903 A264904 A264905

KEYWORD

nonn,tabf,easy

AUTHOR

Alois P. Heinz, Nov 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 16:16 EDT 2020. Contains 333127 sequences. (Running on oeis4.)